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Preface

The goal of this book is to help readers learn software design by discovering the
experience of the design process. I share my knowledge and experience of software
design through a narrative that introduces each element of design know-how in con-
text, and explores alternative solutions in that context. The narrative is supported by
hundreds of code fragments and design diagrams.

This book is grounded in two decades of teaching software design at McGill
University. Initially, my approach was to explain the existing software design know-
how. However, I soon realized that the main challenge of teaching software design
lay not in communicating how to apply a given design technique, but rather in which
context and, most importantly, for what reason.

My hope is that this book can serve as an effective resource for learning soft-
ware design. However, I do not believe that it is possible to develop significant
design skills solely by reading a book. In my own learning process, I have benefited
hugely from reading other people’s code, regularly writing code, and relentlessly
refactoring existing code to experiment with alternative design solutions. For this
reason, this book emphasizes coding and experimentation as a necessary comple-
ment to reading the text. To support this aspect of the learning process, I provide a
companion website with practice exercises, and two sample applications that illus-
trate numerous design decisions. An orientation through these sample applications
is provided in Code Exploration insets throughout the chapters.

As its title indicates, this book provides an introduction to software design us-
ing the Java programming language. The code used throughout the book, as well
as the sample applications, are in Java. The Java programming language, however,
is a means to communicate design ideas, and not the topic of the book. I aimed to
cover design concepts and techniques that are applicable in a host of technologies.
Many concepts, such as encapsulation, will be relevant in any technology. Others,
such as inheritance, will be paradigm-specific, but relevant in multiple program-
ming languages. For both general and paradigm-specific information, it should be
straightforward to adapt the examples to other programming languages. In a few
cases, I address a Java-specific mechanism with implications on design. In such
cases, the mechanism is presented as one realization of a more general idea.
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This book is targeted at readers who have a minimum of programming experience
and want to move from writing small programs and scripts to tackling the develop-
ment of larger systems. This audience naturally includes students in university-level
computer science and software engineering programs. However, I kept the prerequi-
sites to specialized computing concepts to a minimum, so that the content is also ac-
cessible to programmers without a primary training in computing. In a similar vein,
understanding the code fragments requires only a minimum knowledge of Java, such
as would be taught in an introductory programming course. Information about Java
that is crucial to understand the text is provided in an appendix, more advanced
features are introduced and explained as necessary, and I make a minimum of refer-
ences to elements of the language’s class library. My hope is thus that the book can
be useful to anyone who wants to write clean, well-designed software.

Organization of the Book

The first chapter is a general introduction to software design. The subsequent chap-
ters provide a progressive coverage of design concepts and techniques presented as
a continuous narrative anchored in specific design problems. In addition to the main
content, the book includes different features to orient readers and help use the book
as a launchpad for further exploration and learning.

¢ Chapter Overview: At the beginning of each chapter, a callout lists the concepts,
principles, patterns, and antipatterns covered in the chapter.

* Design Context: Following the overview, a paragraph titled Design Context in-
troduces the design contexts that are used as running examples in the chapter. It is
thus not necessary to read all previous chapters to understand the code discussed
in a given chapter.

* Diagrams: Each chapter includes numerous diagrams that illustrate design ideas.
Although they are provided to illustrate the ideas in the text, the diagrams are also
realistic illustrations of diagrams that can be used in practice as part of design
discussions.

* Code Fragments: Each chapter includes many code fragments. The code gen-
erally follows the conventions presented in Appendix B, with occasional con-
cessions made to make the code more compact. A complete version of the code
fragments can be downloaded from the companion website (see below).

» Insights: In each chapter, the main numbered sections are followed by an un-
numbered section titled Insights. This section forms an actionable summary of
the key information and advice provided in the chapter. It is meant as a catalog of
applicable design knowledge, and assumes the material in the chapter has been
mostly assimilated. The insights are in bullet points to be easily perused.

¢ Code Exploration: At various points in the text, insets titled Code Exploration
provide a discussion of software design in practice. To facilitate good flow and
avoid getting lost in details, the design contexts discussed in the main chapter
text are kept as simple as possible. As a result, some interesting aspects of the
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software design experience can get lost in the simplification. The code explo-
ration activity is the opportunity to consider how some of the topics presented in
the chapter manifest themselves in practice. The Code Exploration insets point
to specific parts of the code of sample applications. In concert with reading the
text of a Code Exploration inset, I recommend reviewing the code referenced
and trying to understand it as much as possible. The sample applications are de-
scribed in Appendix C. They include JetUML, the application used to create all
the diagrams in the book.

* Further Reading: The Further Reading section provides pointers to references
that complement the material presented in the chapter.

e Index and Lists of Concepts: The book includes a detailed index. In addition
to a catalog of key terms in context, the index includes lists of related signifi-
cant terms covered in the book. These include the list of: design patterns, design
antipatterns, design principles, and UML diagrams.

Companion Resources

Additional resources for this book are available on GitHub at https://github.
com/prmr/DesignBook. The material in that repository includes a complete and
commented version of the code that appears in the text, as well as practice exercises
and their solution.

All the code samples in the book are also available in a special interactive format
at https://codesample.info. Each webpage on that site is a complete Java code
example annotated with additional explanations that can be revealed on demand.
The website also contains supplementary code samples on the essentials of Java
programming, and on how to use common Java library classes.

Two complete sample Java applications, an interactive card game and a diagram-
ming tool, are provided as a basis for additional study and exploration. The two
applications were developed following many of the principles and techniques de-
scribed in the book. A description of the sample applications and instructions for
accessing their code is provided in Appendix C.
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Chapter 1
Introduction

In 1988, a fascinating little piece of code hits the limelight. That year, one of the
winners of the annual International Obfuscated C Code Contest features a program
that writes out to the terminal console the text of an eighteenth-century poem titled
The Twelve Days of Christmas. Figure 1.1 shows the first three verses of the text, as
they appear on the output console when executing the code. This poem is particular
in that its text has a regular structure. Text with such a structure is amenable to being
constructed by software in a way that goes beyond printing hard-coded data. With
a poem like The Twelve Days of Christmas, there was thus opportunity for creating
a clear and compact solution for displaying a poem on the console. However, as
promised by the name of the contest where it was featured, the program is anything
but clear. If fact, its inner workings are unfathomable. Figure 1.2 reproduces the
complete code of the program.

On the first day of Christmas my true love gave to me
a partridge in a pear tree.

On the second day of Christmas my true love gave to me
two turtle doves
and a partridge in a pear tree.

On the third day of Christmas my true love gave to me
three French hens, two turtle doves
and a partridge in a pear tree.

Fig. 1.1 Partial output of The Twelve Days of Christmas program of Figure 1.2

This quirky piece of computer science trivia illustrates the impact of a lack of
self-evident structure in software. Here, we have a programming problem with triv-
ial requirements: the functionality of interest requires no input and produces a sin-

© Springer Nature Switzerland AG 2026 1
M. P. Robillard, Introduction to Software Design with Java
https://doi.org/10.1007/978-3-032-11821-9_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-11821-9_1&domain=pdf

2 1 Introduction

main(t,_,a ) charx a; {return!0<t?t<3?main(-79,-13,a+main(-87,
1-_,main(-86, 0,a+1 )+a)):1,t<_?main( t+1, _, a ):3,main(-94,
-27+t, a )&&t == 2 ?_<13 ? main ( 2, _+1,"%s %d %d\n" ):9:16:

t<0?t<-72?main( _, t,"@n’+,#’ /*x{}w+/whcdnr/+, {}r/*de}+, /*{*+\
,/w{Ss+, /wikgdnt, /#{1,+, /n{n+, /+#n+, /#; Fqkn+, /+k#; 4+, /T T dxT\
3, 1 {w+K w/K:"+}e#’ ;dg#’ 1l qg#’+d’'K#!/+k#; g’ r}eKK#}w’/ r}eKK{nl]\
"/ #a#n’) () #tw’) () {nl]’ /+#n’ ;dirw’ i:# ) {nl]!/n{n#’; r{#w’ r\
nc{nl]’/#{1,+'K {rw’ 1iK{; [{nl]’ /wH#qg#n’wk nw’ iwk{KK{nl]!/w{\
ST 14#w#’ i; :{nl]’/x{g#’1d;r’ }{nlwb!/*de}’'c ;;{nl’—{}rw]’/+,\
PE# x Y #nc, ', #nw]’ /+kd +et+; # rdgfw! nr’/ ") P+ {rl#’ {n’ ") # \
POAMEHF (/M) 1 £<=50?_==xa?putchar(31[a]) :main(-65,_,a+1l) :main
((xa == "/")+t, _,a+1l):0<t?main ( 2, 2 , "%s"):xa=='/’||main
(0,main (=61, *a,"!ek;dc i@bK’ (g)-[w]*%n+r3#1, {}:\nuwloca-0;m\
.vpbks, fxntdCeghiry"),a+l);}

Fig. 1.2 Source code of the 1988 The Twelve Days of Christmas C program by lan Phillips. This
code compiles and executing it will produce the output illustrated in Figure 1.1. © 1988, Landon
Curt Noll and Larry Bassel. Reproduced with permission.

gle, unchangeable output. Yet, the code to support this functionality cannot be un-
derstood by a normal human being. But what is the problem, if the code works?

Software needs to change, and for software to change, at least one person must
be involved at some point. Software needs to change for a variety of reasons, from
fixing bugs to adapting the code to an evolving world. For example, many of the
gifts referred to in the poem are European birds (e.g., partridge, turtle doves, French
hens). Contemporary software development best practices include the localization
of software applications, namely, the option to tailor a software application to ac-
count for region-specific characteristics. It would thus be nice to adapt the code of
the application to replace the name of European birds to some that readers could re-
late to based on their own region (for example, to replace partridge with turkey for
North American users). To modify a piece of code, however, one must understand
its structure, and this structure must, to a certain extent, accommodate the change.
In the case of The Twelve Days of Christmas, any ambition to ever change the code
is hopeless.

The example of The Twelve Days of Christmas is facetious for the sake of illus-
tration. Because this code was obfuscated on purpose, it would be comforting if we
could discount it as irrelevant. Unfortunately, because writing messy code is often
the path of least resistance in the complex social, technological, and economic real-
ity of software development, badly designed code is not hard to find. For example,
in a famous high-profile case where automotive software was determined by the
courts to be responsible for a fatal accident, the experts who reviewed the software
likened its structure to that of a bowl of spaghetti. Whether code is cryptic purpose-
fully or accidentally, the result is similar: it is hard to understand and change without
introducing errors.
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To explore the contrast, let us design a version of the program where the structure
is evident. Consistently with the rest of the code in this book, the program is in Java.
First, we tackle the issue of producing the first line of a verse:

static String[] DAYS = {"first", "second", ..., "twelfth"};

static String firstLine (int day) {
return "On the " + DAYS[day] +
" day of Christmas my true love gave to me:\n";

This code is clear because the function is short, it abstracts an obvious concept
(the creation of the first line), and the only parameterization involved maps directly
to the problem domain (changing the day).

The second sub-problem is to create the list of gifts for a given day. In this case
we can leverage the inherent recursion in the poem’s structure to organize the code
in a function that creates a list of gifts by adding the last gift to a smaller list of gifts:

static String[] GIFTS = { "a partridge in a pear tree",
"two turtle doves", ... };

static String allGifts (int day) {
if (day == 0) {
return "and " 4+ GIFTS[O0];
}
else {
return GIFTS[day] + "\n" + allGifts(day-1);
}

The a11Gifts function provides a classic implementation of a recursive algo-
rithm. In this case, the code’s structure is explicit because it directly realizes a foun-
dational strategy in computing.

At this point the only thing left it to put the poem together by assembling the
twelve verses. Here, the only small issue is that, in the first verse, we do not add the
word and in front of a partridge. No matter how small a program, it can be difficult
to completely avoid annoying corner cases.

static String poem() {
String poem = firstLine(0) + GIFTS[0] + "\n\n";
for (int day = 1; day < 12; day++) {
poem += firstLine(day) + allGifts(day) + "\n\n";
}

return poem;

}

At a glance, we see the overall structure of the code: a special case for the first
verse, then an iteration through the remaining eleven verses, where each verse is
created by concatenating the output of two functions: one to create the first line, and
the other to create the list of gifts.
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1.1 Defining Software Design

Software design is a mysterious activity. For many software development projects,
“the design” is not necessarily something one can retrieve and look at. Similarly,
very few people walk around with the title of “software designer”. In that sense,
designing software is not like designing furniture or clothing.

The word design is both a verb and a noun, so it can refer to both a process (to de-
sign) and the outcome of this process (a design). My working definition of software
design (the process) is the construction of abstractions of data and computation and
the organization of these abstractions into a working software application. At first
this may sound overly restrictive, but when we consider everything that the term
abstraction can mean (variables, classes, objects, etc.), we see that we are afforded
quite a bit of flexibility for interpreting what software design means.

In practice, the design process is essentially one of decision making. Should we
use a list or a stack? What services should this interface offer? Where should this
error be handled? Considering design as decision making leads to the concept of
a design space. A design space can be imagined as an n-dimensional geometric
space where each dimension corresponds to a design quality attribute. Typical de-
sign quality attributes for software include understandability, reusability, and ease
of implementation. Within such a design space, each specific design decision (or co-
herent set of decisions) corresponds to a coordinate in the space that represents the
consequence of the decision. Figure 1.3 illustrates the idea with two dimensions. In
practice, any design decision is likely to be good in some dimension, but less good
in other dimensions, something we call a design trade-off.

Two partitions of the design space that are useful to consider are the space of
possible solutions, and the space of acceptable solutions. We can observe that the
ideal solution, which is optimal in all dimensions, is unlikely to be possible. In
other words, given a design problem, there is not necessarily a single solution that is
the “right answer”, only solutions that are better or worse in some dimensions (but
including some solutions that are pretty bad in most dimensions).

The concept of a design space may make it look like selecting a design deci-
sion is a systematic process. This is not the case. Where the analogy breaks down is
that a geometric space is completely defined, whereas the reality of software design
is rife with uncertainty. First, not all possible decisions are known and, in com-
plex situations, there may be an infinity of them. Second, estimating to what extent
a design decision fulfills a given quality attribute (e.g., understandability) is an ap-
proximate process. Consequently, there is no standard formula for arriving at a point
in the design space. In most realistic software development contexts, it will not be
the case that to design and implement a software requirement, we can follow a pre-
determined set of steps. Software design is a heuristic process: it consists of iterative
problem-solving guided by experience and know-how (see Section 1.4). In fact, the
heuristic nature of the software design process is what makes it an exciting creative
activity.

The quality attributes that constitute the dimensions of the design space also
correspond to the general goals of design. One of the most important goals for soft-
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Fig. 1.3 A hypothetical design space

ware design is to reduce the complexity of software, which means making it easier
to understand. Cleanly-designed code that is easy to understand is less error-prone
and easier to modify. In contrast, messy code obscures the important decisions of
its original developers. When developers ignore existing design constraints, they
risk modifying code in a way that does not agree with the original structure, and
thereby introduce errors and generally degrade the quality of the code. The problem
of modifying code in a way that does not respect the original structure has been
called ignorant surgery.

In general, the relative importance of design goals depends on the context in
which a piece of software is being designed. A design context (or problem) is a
specific set of requirements and constraints within a domain in which a design solu-
tion must be found and integrated. For example, because of economic or contractual
reasons, it may be required to design a particular piece of software to maximize its
reusability. Or, if a piece of software is intended to be integrated into safety-critical
applications, it may be more important to prioritize robustness (i.e., resilience to
errors). In this book, I give a lot of importance to the understandability quality at-
tribute. I try to emphasize designs where the code itself reveals the underlying design
decisions and the intent behind these design decisions. The idea of having design
decisions be self-evident in code is a property I call sustainability.

If we consider that the design process is a series of decisions-making activities
about software abstractions, then it follows that a good definition for a design is a
cohesive collection of these decisions. This definition for a design artifact is suffi-
ciently general to avoid dictating the medium in which the design is captured. In
formal software development settings, this could be an official standardized design
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document. In less formal contexts, design decisions could be stored in the code, di-
agrams, or various documentation pages associated with the project. In the extreme,
design decisions could exist only in the mind of the developers who made them.
Because people tend to forget or misremember, this latter approach is best kept to
a minimum. Section 1.3 provides an overview of how design knowledge can be
captured.

1.2 Design in the Software Development Process

Design is only one of the many activities that take place during the development of
a software system. There is an abundant literature on different process models for
software development. A process model describes (and sometimes prescribes) how
the different steps required to create a system are organized. Different process mod-
els offer different ways of doing things for different reasons. In the early days of
the software engineering discipline it was believed that a planning-heavy process,
exemplified by the waterfall software process model, was the desirable way to build
high-quality software. However, in the mid-1990s this belief was challenged by a
movement towards a more organic approach to software development, also called
agile development. In practice, ideas about how to best develop software keep evolv-
ing, and in the end the important things are to have a development process in the first
place, and for that process to be well-adapted to the type of system being developed
and the organization that develops it. For example, the process used by an organiza-
tion to develop a prototype for a video game would probably be different from the
process used to develop banking or aeronautical software.

The issue of devising, adapting, or even following a software development pro-
cess is not the main focus of this book. However, even when learning about software
design, it is useful to have a general idea of software development processes, if only
to stay oriented in the wide and buzzword-laden realm of technology.

One concept of the software development process literature that is related to soft-
ware design is the idea of a software development practice. A practice is a well-
understood way of doing something to achieve a certain benefit. An example of a
practice many programmers are familiar with is version control (the use of software
tools to keep track of changes to software development artifacts). Another example
of software development practice is pair programming (writing code as a team of
two in front of a single computer). In this book I refer to a number of software de-
velopment practices that directly support good design, including the use of coding
conventions (see Appendix B) and refactoring (see below).

Another concept of software development processes that is relevant to software
design is that of the iteration. As discussed in Section 1.1, when searching for a
design solution, it is usual to iterate over various alternatives. However, iterations
also take place at a more macroscopic level in software development, in the sense
that the design of the system may be periodically extended, reviewed, and/or im-
proved. In some cases, the design can even be improved without any change to the
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observable behavior of the system. Improving the design of code without changing
its functionality is the software development practice known as refactoring. There
are various reasons why refactoring can become necessary or desirable. One reason
is that the original developer did not really get it right, and after working with the
code for a while it becomes apparent that a different design would be better. Another
reason is that we might want to add modules and features that do not integrate well
with the existing design, so we first refactor the design to prepare it so that it better
supports the later addition of new code. A third reason is to reduce accumulated
design weaknesses. As part of maintaining the code (e.g., to fix bugs), developers
occasionally implement quick and dirty solutions that do not align properly with the
existing design. This phenomenon is known as accumulating technical debt. By not
investing the effort necessary to code a clean solution, the team effectively borrows
development effort from the future. If allowed to accumulate, too much technical
debt can threaten the viability of the project, just like the risk of bankruptcy incurred
by excessive borrowing in the financial sense. When technical debt is incurred in a
project, refactoring is a way to pay it back, and good software development teams
will periodically refactor their code. Thus, software design is in continual evolution.

1.3 Capturing Design Knowledge

A design (or design solution) is a collection of decisions, each of which is the result
of a search process through a design space for a particular design problem, or con-
text. In practice, a design decision is a statement about how to organize abstractions
to meet a requirement, ideally associated with the reason for this statement. A sim-
ple example could be: We will store the appointments in a list because we need to
know in what order they were added. For this decision to even exist, it has to be in
at least one developer’s mind at some point. We thus have a first medium for stor-
ing design decisions: a person’s mind. For small projects, this could be sufficient.
However, given that human memory is unreliable, it can be worthwhile to record
important design decisions externally. This raises the question of how to capture de-
sign knowledge. The following is a concise summary of the options for externalizing
design knowledge:

* Source code: Many design decisions can be captured directly in the source code.
The example above, of selecting a list as a data structure, would be one case. The
advantage of source code is that it is a formal language whose rules are checked
by the compiler. Unfortunately, source code is not a good substrate for capturing
the rationale for design decisions. For this purpose, code comments can be of
some assistance.

* Design documents and diagrams: Design decisions can be captured in docu-
ments specifically aimed at capturing such design decisions. There exists a wide
variety of formats for documents about software, from standardized design doc-
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uments to blog posts. Design documents may also include diagrams, which are
another way to represent design decisions.

* Communication and collaboration tools: Design information can be captured
in email and comments stored in tools used for software development, such as
issue management systems and version control systems.

* Specialized models: In certain software development projects, developers use
formal models to specify various aspects of the software. These models can then
be automatically converted into code in a programming language. Such an ap-
proach is called generative programming or model-driven development (MDD).
In model-driven development, the models serve as design documents. As a soft-
ware construction approach, model-driven design and development is outside the
scope of this book.

Because the level of design abstraction covered by this book remains close to the
source code, many of the design decisions discussed will be at least partly reflected
in the code. Subsequent chapters will also contain many diagrams and accompany-
ing text that document design decisions.

The Unified Modeling Language

There will often be situations where we need to discuss design problems and solu-
tions that are impractical to describe using either source code or natural language.
For this purpose we can use a specialized modeling language. This situation is not
limited to software. For example, describing instrumental music in plain language
is near-impossible: instead, we use musical notation.

Historically, many different modeling languages and notations have been devel-
oped for representing, at an abstract level, various aspects of a software system. This
disparity was, however, an obstacle to adoption because of the overhead involved in
interpreting models expressed in an unfamiliar notation. Thankfully, in the mid-
1990s the main software modeling notations were merged into a single one, the
Unified Modeling Language (UML), which was subsequently adopted as a standard
by the International Organization for Standardization (ISO).

The UML is a modeling language organized in terms of different types of dia-
grams intended to illustrate different aspects of software. Examples of design in-
formation than can be neatly captured in the UML include relationships between
classes (e.g., a inherits from B), changes in the state of an object (e.g., the 1ist ob-
ject goes from Empty to Non-Empty when the first element is added), and sequences
of calls dispatched on objects (e.g., a.m1 () resultsin a call to b.m2 ()).

Not all development teams use the UML. However, those who do can use it in
different ways for different reasons. For example, UML can be used to produce
formal design documentation in waterfall-type development processes. Others use
the UML to describe enough of the software to be able to automatically generate
the code from the models, following the idea of generative programming. In this
book, I use the UML simply for sketching design ideas. The diagrams included in
this book are not expected to be automatically transformable into code. I also use
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the smallest subset of the modeling language necessary, and introduce the notation
progressively.

An important thing to remember about UML diagrams is that they are models.
This means that they are not intended to capture every single detail of a solution.
Ideally, a UML diagram will focus on illustrating a single main idea and only in-
clude the relevant information. In UML diagramming it is a common practice to
leave out the parts of a system and details that are not directly relevant to the ideas
or design decisions being represented.

1.4 Sharing Design Know-How

Capturing knowledge about the design of a particular system is one thing, but how
do we capture general knowledge about how to design software? Software design
is influenced by the skills and experience of the designer, and this type of heuris-
tic knowledge is not easy to synthesize, package, and share. In earlier days, orga-
nized approaches to share design know-how centered around structured analysis
and design methods, which prescribed a sequence of steps and the use of special-
ized charts and other instruments. Such approaches peaked in the 1980s, and were
replaced with adaptations suited to object-oriented programming, a paradigm that
was then quickly gaining adoption. Comprehensive object-oriented design methods
themselves peaked in the mid-1990s. In the meantime, a number of design principles
were becoming increasingly recognized and accepted, and it was being observed
that some elements of design solutions tended to recur between many applications,
a concept that would become known as design patterns and antipatterns.

Software Design Principles

Design principles are general ideas that guide decision making when searching for a
solution, without being strict rules that can be followed systematically. For example,
Loose Coupling is a commonly referenced principle of software design that states
that different parts of a software (such as classes) should have as few dependencies
between them as possible. Another example is Separation of Concerns, which sug-
gests to organize software entities such that each one targets a single area of focus,
or “concern”. There is no official list or taxonomy of software design principles, and
different principles can be described or interpreted differently by different people.
Because design principles are abstract ideas, they require practice and experience to
apply properly. In this book, I cover specific design principles in detail where they
are most relevant in terms of the overall organization of the material.
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Design Patterns

The idea of reusing elements of object-oriented design was captured in the con-
cept of a design pattern in the book Design Patterns: Elements of Reusable Object-
Oriented Software [7]. This book, often referred to as the Gang of Four book from
the author list, is one of the most influential software design books in existence.
Following the concept of an architectural pattern originally proposed by an archi-
tect named Christopher Alexander, the book describes 23 patterns for addressing
common software design problems. Since then, countless other patterns have been
documented. The idea to capture abstract design solutions that address specific prob-
lems was a breakthrough for software engineering, because it provided a practical
way to convey design know-how and experience without the requirement to adopt
a comprehensive design method. To this day, design patterns and close variants of
the concept have been a dominant way to capture design know-how. There currently
exist countless design catalogs for different programming languages, in the form of
books and websites.
According to the Gang of Four, a pattern has four essential elements:

The pattern name [...] Naming a pattern immediately increases our design vocabulary. It
lets us design at a higher level of abstraction [...] The problem describes when to apply the
pattern. It explains the problem and its context [. .. ] The solution describes the elements that
make up the design, their relationships, responsibilities, and collaborations. The solution
doesn’t describe a particular concrete design or implementation, because a pattern is like a
template [...] The consequences are the results and trade-offs of applying the pattern. .. [7]

In this book, I present a subset of the original patterns by integrating them in the
flow of the material when they become relevant. I do not reproduce the structured
description that can be found in other pattern catalogs. I instead use a lightweight
description for a pattern that focuses on the link between the problem and solution,
and I include a discussion of important design decisions related to the pattern. I also
prefer to refer to the problem as the context for applying a pattern, because design
problems can sometimes be difficult to isolate. Finally, I will sometimes express
the solution embodied by a pattern as a UML diagram that captures the name of
the abstract elements of the pattern. Because these elements are abstract, I prefer
to refer to them as a solution template rather than a solution. A typical task when
attempting to apply a design pattern in a context is to map the abstract elements of
the solution template to concrete design elements in the code. In the text, the name
of design patterns are set in SMALL CAps FONT. This is to indicate that a term refers to
a well-defined design concept, as opposed to a general use of the term. For example,
one design pattern is called the Strategy pattern. Instead of continuously referring
to it as the Strategy design pattern, 1 will refer to it as the STRATEGY, which will
distinguish it from the concept of a strategy as a general problem-solving approach.

Because solution templates for design patterns can be looked up in any number
of resources, the most important skill to develop with respect to design patterns is
to know when to apply them. For this reason, my coverage of design patterns em-
phasizes the rationale for using a pattern and a discussion of its strengths and weak-
nesses in different contexts, and de-emphasizes the focus on solution templates. One
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potential pitfall when first learning about design patterns is to get over-enthusiastic
and try to apply them everywhere. Like all other elements of design solutions, a par-
ticular instance of a design pattern will occupy a specific point in the design space,
with attendant benefits and drawbacks. If I can make one generalization about the
use of design patterns, it is that employing one tends to make an overall design more
extensible. Sometimes, this extensibility is exactly what we need. At other times, it
leads to unnecessary structures that clutter the code. In other words, using a partic-
ular design pattern in a particular way in a given context is a design decision which,
like most other design decisions, should be critically assessed.

Design Antipatterns

An interesting take on the idea of a design pattern is that of a design antipattern. Just
as it can be observed that some design solution elements recur between applications,
it is also the case that recognizable flaws can be abstracted from many similar cases
and catalogued. This influential idea took hold around the turn of the millennium
in a popular book on refactoring, which documents 22 antipatterns as motivation
to refactor the corresponding code [6]. Typical antipatterns include problems such
as DUPLICATED CODE}, LONG METHODT, and others that will be covered in this book.
For reasons similar to design patterns, antipatterns are set in SMALL CAPst, but are
followed by a dagger symbol to distinguish them from actual patterns. Design an-
tipatterns are also known as code smells, or bad smells (in code), to convey the idea
of a symptom that something is not quite right.

Insights

This chapter introduced software design and placed it in the general context of soft-
ware development projects.

* The verb fo design refers to the process we follow when we design software, and
the noun a design refers to the outcome of this process;

* The process of software design is the construction of abstractions of data and
computation and the organization of these abstractions into a software solution;

* There is rarely a single solution to a design problem, only solutions that are better
or worse in some dimensions;

* A design artifact is an external representation of one or more design decisions;

* Design is only one of many activities that take place during the development of a
software system. Software development follows a process that can vary from or-
ganization to organization, and vary from planning-heavy to agile. Development
processes typically involve iterations;

* A software development practice is a well-understood way of doing something to
achieve a certain benefit. Examples include version control, coding conventions,
and refactoring;
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* Design knowledge can be captured in source code, code comments, specialized
documents and diagrams, discussion forums, and models;

e The Unified Modeling Language, or UML, is a modeling language organized
in terms of different types of diagrams. Using UML can be an effective way to
illustrate different aspects of software without getting caught up in details;

* A design principle is a general idea that guides decision making when searching
for a solution;

* A design pattern captures an abstract design solution that is applicable in a com-
mon design context. The description of a design pattern includes a name, a de-
scription of the design problem or context it addresses, a solution template, and
a discussion of the consequences of applying the pattern;

* A design antipattern is an abstract description of a common design flaw.

Further Reading

The paper Software Aging by David L. Parnas [13] introduces the term ignorant
surgery and provides a compelling motivation for the benefits of maintaining good
design in software. Parnas is one of the early contributors to the software engineer-
ing discipline. Chapter 1 of the book Clean Code: A Handbook of Agile Software
Craftmanship by Robert C. Martin [8] discusses the various ills of bad or “messy”
code. My short paper titled Sustainable Software Design discusses in more detail
what it means for design decisions to be self-evident [14].

Chapter 1 of the book UML Distilled, 3rd Edition by Martin Fowler [6] provides
a more comprehensive introduction to the UML. Fowler distinguishes between three
modes for using the UML: as sketches for design, as a blueprint for creating an ap-
plication, and as source code that can be executed. Sketching is the mode employed
in this book.

Among the many books that discuss software design principles, Software Archi-
tecture: A Comprehensive Framework and Guide for Practitioners by Oliver Vogel,
Ingo Arnold, Arif Chughtai, and Timo Kehrer [17] is noteworthy for its organization
of the different principles and of the relations between them.

The original book on design patterns is Design Patterns: Elements of Reusable
Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides [7]. This book is often referred to as the Gang of Four book. Be-
cause it predates the UML, the notation it uses for capturing software designs may
feel a bit foreign. Nevertheless, it is a timeless reference work.

The book Refactoring: Improving the Design of Existing Code, also by Martin
Fowler [4], is the main reference on the practice of refactoring. It introduces the idea
of design antipatterns (which are called code smells in the book). Robert C. Martin
also includes a list of bad smells in Chapter 17 of Clean Code, cited above.
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Concepts and Principles: Abstraction, assertion, class, design by con-
tract, encapsulation, immutability, information hiding, input validation, in-
terface, object diagram, record, scope.

Patterns and Antipatterns: INAPPROPRIATE INTIMACYT, PRIMITIVE OBSES-
SIONT.

An essential technique in software design is to decompose a system into distinct,
manageable abstractions. However, there is little value in decomposing a piece of
software into several parts if each part depends on all the other parts in a tangled
mess of interactions. For a decomposition to be useful, the resulting abstractions
have to be well isolated from each other. For good design, an idea that should be
inseparable from that of software abstraction is encapsulation.

Design Context

We start our exploration of software design by considering how to effectively rep-
resent a deck of playing cards in code. This representation would be necessary for
most computer card games, for example the Solitaire game used as a sample applica-
tion. In the card deck used as a running example, there are 52 distinct cards and any
given card can be completely defined by its suit (Hearts <, Spades #, Diamonds $,
Clubs &) and its rank (Ace, 2, 3, ..., 10, Jack, Queen, King). A software structure to
represent a deck of cards should therefore be able to represent any sequence of any
number of distinct cards between 0 and 52. Two main operations required of a deck
of cards are to shuffle it and to draw cards from it. Shuffling randomly reorders the
cards in the deck. In the domain of card games, drawing a card means to remove it
from the deck (typically from the top). This operation is not to be confused with the
action of depicting the card on a user interface component.
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2.1 Encapsulation and Information Hiding

The idea of encapsulation is to enclose something as if it were in a capsule. For
example, we can think of a nut, which is encapsulated in its shell. The shell, or
capsule, serves as protection. In software design we encapsulate both data and com-
putation to limit the number of contact points between different parts of the code.
Encapsulation has several benefits: it makes it easier to understand a piece of code in
isolation, it makes the use of the isolated part by the rest of the code less error-prone,
and it makes it easier to change one part of the code without breaking anything. In
software design, the equivalent of a shell is the general concept of an interface.

Encapsulation helps to apply the principle of information hiding, which has been
around since the early 1970s. Following the principle of information hiding, encap-
sulated structures should only reveal the minimum amount of information that is
necessary to use them, and hide the rest. A typical example of information hiding
is an implementation of a stack abstract data type (ADT) whose interface only pro-
vides push and pop operations. This minimal interface allows client code to make
use of the stack structure, but decisions on how to store elements in the stack remain
hidden from the code that uses the stack. I use the term client code to refer to any
code that uses a code element that is not part of the definition of this element. The
term code in client code is especially important, because here client does not refer
to a customer or user of a software project. Which part of the code qualifies as client
code will depend on the situation at hand. In many cases, the details of the client
code will not really matter in the discussion of the design ideas.

Although information hiding is a principle of software design that is very gen-
eral, there exist specific techniques that we can use to help ensure our code is well-
encapsulated and respects the principle. The rest of this chapter presents some of
these techniques.

2.2 Encoding Abstractions as Types

As our first design task, we define the abstractions that are necessary to represent a
deck of cards. An abstraction is a conceptual building block for a software system.
Examples of common abstractions in computing include data structures (for exam-
ple, stack, list) and operations (sorting, iterating). However, abstractions can also
refer to ideas in the problem domain, such as playing card. With the term defining
an abstraction, I mean deciding what the abstraction represents, and what it will
look like in terms of source code. In the case of a deck of cards, the first part of
the process is straightforward, because the concepts we need to represent in code
(a playing card, a deck of cards) are well-defined in the real world. This will not
always be the case.

Essentially, a deck of cards is an ordered collection of playing cards. We could
use any standard data structure to represent this collection (an array, a list, etc.).
However, what would such a collection hold? What is a card? In the code, we can
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represent a playing card in many different ways. For example, we could use an
integer between 0 and 51 where the value represents a certain card according to a
convention. For example, Clubs could have numbers 0—12 in increasing rank, Hearts
13-25, etc.:

int card = 13; // 13 = The Ace of Hearts
int suit = card / 13 // 1 = Hearts
int rank = card % 13; // 0 = Ace

This approach would also require us to have similar conventions to represent suits
and ranks, as illustrated on the second and third lines.! To avoid having to contin-
ually divide and multiply numbers that represent cards to switch between suits, we
could also represent a card as a pair of values, the first one encoding the suit, and
the second one encoding the rank (or vice-versa):

int[] card = {1,0}; // The Ace of Hearts

While we are at it, we could even decide to represent a card using a combination
of six Boolean values. Although extremely inconvenient, this design decision is
technically possible to implement: it is an example of a decision that is possible, but
not acceptable (see Section 1.1). As it turns out, all three options above have major
drawbacks.

First, the representation of a card does not map to the corresponding domain
concept. To facilitate code understanding and help avoid programming errors, the
representation of values should ideally be tied to the concept they represent. For
example, the general type int maps to the concept of an integer (a type of number),
not that of a playing card. We could define a variable of type int intended to store
a playing card, and unwittingly put a value that represents a different entity in it
(e.g., the number of cards in the deck). This will not be noticed as an error by the
compiler, yet it is likely to lead to intense confusion when executing the code.

Second, the representation of a card is coupled with its implementation. If our
design decision is that cards should be represented as integers, any location in the
code that must store a value that represents a card will refer to an integer. Chang-
ing this encoding to something else (for example, the two-element array discussed
above) will require discovering and changing every single location where an int
variable is used to store a card, and all the code that works with cards as integers.

Third, it is easy to corrupt a variable that stores a value that represents a card. In
Java a variable of type int can take 237 distinct values. To represent a playing card
we only need a tiny subset of these (52 values). Consequently, the overwhelming
majority of values we can store in an int variable intended to represent a playing
card (2°2 — 52) does not represent any valid information. This opens the door to
errors. The problem would have been even worse had we decided to use a two-
element array of type int, which supports 2% + 1 values.?

We can do better. It is generally a bad idea to try to shoehorn domain concepts
into basic types such as int, String, and so on. Ideally, these types should only

! The modulo operator (%) returns the remainder of the integer division.
2 The additional value comes from the fact that array-typed variables can also be null.
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be used to hold values that are proper values of the type. For instance, the int
type should only be used to hold actual integers (and perhaps very similar concepts,
such as currency). Similarly, strings should be used only to hold sequences of
characters meant to represent text or text-like information, as opposed to being some
encoding of some other concept (for example, "AceofClubs"). The tendency to
use primitive types to represent other abstractions is a common antipattern called
PRIMITIVE OBSESSIONT.

To apply the principle of information hiding, we instead organize our code to
hide the decision of how exactly we represent a card. We hide this decision behind
an interface specifically tied with the concept of a card. In programming languages
with a strong support for types, such as Java, this is typically accomplished through
the use of types. In our case, to properly represent a card in code, we define our own
type Card as a Java class:

class Card {}

As we will see below, the use of a specific type to represent a card will allow us
to hide the decision of how we represent a card internally. However, although we
now have a class card, we still need to decide how to represent a card within the
class. All options are back on the table. We could do simply:

class Card {
int aCard; // 0-51 encodes the card
}

This class defines a single instance variable acard of type int. The name of the
instance variable includes the prefix a as part of a coding convention detailed in
Appendix B. Client code can refer to this variable through dereference (see Sec-
tion A.2), for exarnple:3

Card card = new Card();
card.aCard = 28;

Although using a class links the value to the domain concept of a card, the other
problems persist. First, it is still possible to corrupt the representation of a card.
Second, the decision to represent this value as an int is not exactly hidden, given
that client code would be accessing the variable directly through a dereference of
the instance variable. Let us then tackle the issue of representing the card internally.
The next section handles the issue of hiding this decision.

Two key observations can help us arrive at a better way to encode a card. First,
the value of a playing card is completely and exactly defined in terms of two sub-
concepts: its suit (e.g., Clubs) and its rank (e.g., Ace). So, we can take the process of
defining types one step further, and define abstractions for ranks and suits. Following
the same reasoning as above, primitive values are not a good match for encoding ab-
stractions of a rank and a suit, so we use a dedicated type for each. However, here,
the second important observation comes into play: the rank of a playing card can

3 Technically, this code only compiles if placed in a method declared in a class that is in the same
package as class card. This detail is not important here. Section 2.3 explains where class members
can be accessed in the code.
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only be one of 13 distinct values, which are known in advance and can be enumer-
ated. In the case of suits, the number of values is even smaller (four). The best tool
at our disposal to encode such abstractions is the enumerated type:

enum Suit {

CLUBS, DIAMONDS, SPADES, HEARTS
}

In Java, enumerated types are a special kind of class declaration. The identifiers
listed in the declaration of the enumerated type are globally available constants (see
Section A.3 in the appendix). These constants store a reference to an object of the
class that corresponds to the enumerated value. For example,

Suit suitl = Suit.CLUBS;

Suit suit2 = Suit.CLUBS;
boolean same = suitl == suit2; // same == true

Enumerated types are a great fit here. They meet all our design requirements,
because variables of type suit and Rank are directly tied to their corresponding
concept of rank and suit, and variables of these types can only take values that are
meaningful for the type.* Enumerated types are a simple yet effective feature for
realizing robust designs. They help avoid PrRiMiTIVE OBsEssIoNT and generally make
the code clearer and less error-prone.

The code below completes our definition of class card as a combination of a
rank and a suit value. It assumes that each enumerated type is defined in its own file.
enum Suit {

CLUBS, DIAMONDS, SPADES, HEARTS
}

enum Rank {
ACE, TwWO, ..., QUEEN, KING
}

class Card {
Suit aSuit;
Rank aRank;
}

Now that we have a reasonable type to represent a playing card in the code,
we return to the issue of representing a deck of cards, and again follow the same
reasoning. Because a deck is just a collection of cards, we could represent a deck of
cards as a List of cards:

List<Card> deck = new ArrayList<>();

However, the disadvantages of this approach are the same as the disadvantages of
representing a playing card as an int value:

e Alist of cards is not strongly tied to the concept of a deck. It could represent any
list of cards, e.g., the cards in one of the piles created while playing Solitaire, the
cards discarded as part of the game, etc.

4 With the unfortunate exception of nu11. See Section 4.4.
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* Using a list of cards ties the representation of a deck in the program with its
implementation. If we decide later to replace the list by, say, an array, we would
have to change all the corresponding source code locations.’

e The structure can easily be corrupted: a simple deck of cards can hold a max-
imum of 52 cards, without duplicates. A list allows one to put any number of
cards in the structure, including duplicates.

A better way to approach the representation of a deck of cards in our code is to
also define a proper type for it:

class Deck {
List<Card> aCards = new ArrayList<>();

}

Although it may seem redundant to define a new class to hold just one instance of an
ArrayList, this decision helps avoid many of the problems discussed above. The
new type Deck specializes the list and ties it directly to its corresponding domain
concept. It also becomes possible to hide the decision of how the cards are stored.
The remainder of this chapter presents the details of how to achieve this hiding in
practice.

Code Exploration: Solitaire - Card
A complete version of the card class.

This boxed paragraph, called a Code Exploration, is the first discussion of
design decisions based on the code of the sample applications. The left part of
the title is the name of the sample application, and the right part is the name
of the class discussed. See Appendix C for instructions on how to access the
relevant code.

This chapter has used the creation of a deck of cards as a running example,
so it is worth pointing out class card in the Solitaire project. Some of the
code in the class implements more advanced features that I will return to in
Chapter 4, including the static members and the private constructor. Ignoring
these, however, the basic structure of the class is identical to the one discussed
in this section: two fields of enumerated types to represent the card’s rank and
suit, respectively, as well as two accessor methods to obtain these values from
a card object.

3 Disturbingly, replacing the list by a stack on the right-hand side of the assignment in the listing
would actually work because in Java stack is a subtype of List. In Chapter 7, I explain why this
is disturbing.
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2.3 Scopes and Accessibility

Encoding abstractions as types is only the first step in the process of encapsulation.
Once we have types we feel are good abstractions for our design, we need to ensure
that these types are effective in hiding information from client code. At this point we
have determined that four types are necessary to represent a deck of cards in code:
Deck, Card, Rank, and suit. Each of these types defines a set of possible values
and a set of operations on these values. We now turn to the problem of specifying
the values these types can take and the operations on these types so as to achieve
good encapsulation of both the values and computation.

In Java and most other object-oriented languages, an object is a mechanism to
group variables together and access their values through the process of derefer-
encing (see Section A.2 in the appendix). Without encapsulation, any variable that
forms part of an object can be accessed indiscriminately. For example, given the
following code:
class Deck {

public List<Card> aCards = new ArrayList<>();
}

class Card {
public Rank aRank null;
public Suit aSuit = null;
}

we could use our objects as follows:®

Deck deck = new Deck{();
deck.aCards.add (new Card());
deck.aCards.add (new Card());
deck.aCards.get (1) .aRank = deck.aCards.get (0) .aRank;
System.out.println(deck.aCards.get (0) .aSuit.toString());

Because of the complete lack of encapsulation, we can make unprincipled use
of the internal implementation of our types. Without major effort, this kind of
code invariably leads to bugs, because the number of ways to misuse the struc-
tures greatly exceeds the number of ways to use them properly. For example, al-
though it may not be immediately apparent, the code above, when executed, raises
aNullPointerException. With good encapsulation, it should be near-impossible
to misuse one of our types.

The idea of encapsulation is to hide the internal implementation of an abstraction
behind an interface that tightly controls how an abstraction can be used. Designing
good abstractions and good interfaces for these abstractions are tandem tasks that
underlie most of software design. Designing effective interfaces can be tricky and
requires a combination of different mechanisms and techniques. We start with one
of the simplest, access modifiers. Access modifiers are Java keywords that control
what parts of the code can access certain program elements (e.g., classes, fields,

6 This code is not defined in any method because its exact location does not matter. For example,
the code could be placed in a main method.
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methods). Controlling access to fields is a concept similar to that of visibility and
scope for local variables. In most programming languages, a scope is a lexical region
that acts as a boundary for variables. In Java, scopes are defined using curly braces.
The following code fragment:

public static void main(String[] args) {
{ int a = 0; }
{ int b = a; }

}

has a compilation error because, in the second assignment, the reference to a cannot
be resolved because, according to Java scoping rules, it is not visible in the sec-
ond scope. In this tiny example, the scoping restriction may look like a limitation.
However, scopes are a powerful feature. To understand what happens in the second
statement, we only need to track down references to variables that are in scope (as
opposed to every code location). We can do the same with classes.

In Java, it is possible to control the visibility of classes and class members (and
in particular fields) through the use of access modifiers. In this chapter, I only focus
on the distinction between the public and private access modifiers.” Members
marked public are visible anywhere in the code. In the example above, because
the field acards of class Deck is public, the variable acards of any object of type
Deck is accessible from any code that has a reference to an object of that class. In
contrast, members marked private are only visible within the scope of the class,
namely, between the opening curly brace for the declaration of the class body and
the closing curly brace of the class declaration.

A guideline for achieving good encapsulation is to use the narrowest possi-
ble scope for class members. Thus, instance variables should almost always be
private. Also, public methods should reveal as little as possible about imple-
mentation decisions meant to be encapsulated. A revised design for class card that
respects this guideline is as follows:

public class Card {
private Rank aRank;
private Suit aSuit;

public Card(Rank pRank, Suit pSuit) {
aRank = pRank;
aSuit = pSuit;

}

public Rank rank() {
return aRank; }

public Suit suit () {
return aSuit; }

7 The other two are protected and default (absence of a modifier). Members with default visibility
are accessible by code in classes declared in the same package. I cover the protected modifier in
Chapter 7.
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This class properly encapsulates the representation of a playing card because
client code cannot interact in any way with the internal representation of a card.
In fact, with this design it is possible to change the representation of the card to
use a single field of type int, or an enumerated type (say, PlayingCard), without
requiring any change to the client code.

As amechanism for software design, access modifiers serve a dual purpose. First,
they express the intent of the developer about where certain structures are meant to
be used. Second, they support the automatic enforcement of the stated intent through
compilation. In an ideal design, the intent of the developer should be clear. Access
modifiers also help provide us with our first working definition of an type’s interface
in Java. In general, an interface to a class consists of the methods of that class that
are accessible to another class. For now, we will keep things simple and consider
that the interface to a class is the set of its public methods. This is only a starting
point, and we will be refining this definition of interface as we go along, and in
particular in Section 3.1. For now, what is important is that the public methods of
a type (a class) represent what client code can do with objects of the type, and the
design of all other (non-public) fields and methods remains hidden from that client.

So far, our card type is a simple combination of two fields: arank and asSuit.
The value of each field is set through the constructor and can be accessed through
a getter method that bears the name of the field (excluding the prefix of the naming
convention). Since version 14, Java provides a feature called records to simplify the
declaration of such basic types. The record declaration equivalent to the class above
is as follows:

public record Card (Rank rank, Suit suit) {}

This declaration defines a type with two fields, rank and suit. From this declara-
tion, a constructor is generated that directly assigns arguments to the fields indicated
in the type declaration. In addition, one getter method per field is generated, which
receives the same name as the field.® With the record declaration above, it is now
possible to write client code such as:

Card card = new Card(Rank.ACE, Suit.CLUBS);

Rank rank = card.rank();
Suit suit = card.suit();

Records have other interesting features, including that they can declare additional
constructors and methods. I introduce these features as they become relevant.

Code Exploration: JetUML - Dimension
Avoiding PRIMITIVE OBSESSIONT with a small abstraction.

At first glance, the bimension type, defined as a record, looks exceedingly
simple: a pair of integer values, one to represent a width, one to represent a
height. Why bother, since these values can be accessed individually (using the

8 For this reason, I do not follow the naming convention prefixing field names with a for records,
as this would propagate the prefix to the name of the getters.
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generated getter methods width () and height ())? Would it not be simpler
to just use pairs of integers? Is this not excessive effort to avoid a case of
PRIMITIVE OBSEsSIONT? The answers to these questions are not to be found in
the definition of the record itself, but rather by looking at all the places in the
code where Dimension is used. The rationale for encoding the concept of a
dimension explicitly is threefold: to be able to return both related values as
one object and to prevent errors caused by flipping the width and the height.
Of course, these have to be provided in the right order in the constructor call,
but once a Dimension object is created, the risk of flipping the two values is
eliminated. This definition of type Dimension also illustrates how records can
define additional fields and methods.

2.4 Object Diagrams

An object diagram is a type of UML diagram (see Section 1.3) that represents ob-
jects and how they refer to each other. Whenever a new expression is evaluated, an
object of a class is created and a reference to this object is returned and can be passed
around. It can often be useful to visually represent the resulting graph of objects and
their inter-dependent references.

I introduce a slight enhancement to official UML object diagrams, so as to pro-
vide a representation of an object’s fields and values that resembles the kind of
data-structure diagrams often used in introductory computer science classes. In an
object diagram, a rectangle represents an object, with its name and type indicated as
name : type. Both name and type information are optional, but in general it is useful
to have at least one of the two. In UML diagrams in general, the name of objects (as
opposed to classes) are underlined. Objects can contain fields, which are just like
fields in a Java program. Fields can contain a value of a primitive type or a value of
a reference type (see Section A.1 in the appendix). When the value is a reference
type, it is represented as a directed arrow to the object being referenced.

Let us consider the diagram of Figure 2.1. This diagram models an instance of
the Deck class named deck. It would have been fine to omit this name and sim-
ply indicate :Deck in the rectangle, as in the case of ArrayList<Card>, which is
anonymous. This deck has a field acards whose current value is a reference to
an ArrayList<Card> object. The ArrayList<Card> object’s elementData field
references two Card instances. Here, because ArrayList is a library type, it is nec-
essary to have knowledge of the source code of the library to accurately model
objects of this class. However, for a design sketch, using the actual name is not
critical. To model internal properties of library types without looking up all their
implementation details, it is often sufficient simply to make up evocative names.
For example, the diagram would be just as informative if the field had been named
data Or elements.
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:Card
deck:Deck :ArrayList<Card>
/ ACE:Rank
/ aRank= —
aCards= — elementData = —
aSuit = —
CLUBS:Suit
:Card
aRank= TWO:Rank
aSuit = —

Fig. 2.1 Object diagram showing a detailed model of the object graph for a deck of cards

Through modeling, we can skip over some details. In reality, in an instance of
ArrayList the elementData field refers to an array of object-typed cells that
contain the actual data. This information is not useful here, and we link directly
to the contained data. It is also worth noting how the list refers to two cards, and
not three or four or 52. Another important point about object diagrams is that they
represent a snapshot in the execution of a program. Here it was at the point where the
list had two cards. For the purpose of communicating design information, including
only two cards is sufficient to illustrate that a deck is a list of cards, so it would
not be worth it to depict a snapshot of the program when the deck contains more
cards. The two card instances, however, are modeled in full detail. The values of
enumerated types are distinguished by name, as they should be, and the enumerated
value suit.CLUBS is shared between two cards.

main: AceOfClubs:Card

:Deck
deck = —/
aCards = —

name = "Solitaire" TwoOfClubs:Card

Fig. 2.2 Object diagram showing a simplified model of the object graph for a deck of cards

The second example diagram (Figure 2.2) illustrates some of the additional mod-
eling simplifications we can do, when appropriate. First, I added an untyped object
named main. This “object” is actually a trick for representing a method body. Ob-
ject diagrams do not have an explicit notation to represent code statements that form
the body of a method declaration. However, this can be achieved through untyped
objects by observing that, from the point of view of the diagram, an object and a
method body are both collections of variables (instance variables in the first case,
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local variables in the second). A second difference is that the Deck object is now
anonymous, and the name deck is used to represent the variable in which a refer-
ence to an object (any object) is stored, as opposed to a specific object. Third, the
main method contains a name variable that stores a string. In Java, strings are tech-
nically instances of the reference type string. To be strictly accurate, we should
represent a string value as a reference to an instance of class string that has a ref-
erence to an array of char values, each with one letter. That level of detail would
be both superfluous and annoying, so we just show the string literal. A fourth im-
portant difference is that the ArrayList has been abstracted away. In this diagram,
we see that a deck somehow keeps track of a number of cards in a field acards, but
how these are stored internally is not represented. The cards could be in an array, a
list, whatever. Although in some cases (such as in the next section) the details may
be important, it is often the case that details of internal data structures are super-
fluous. Finally, the value of the card instances are represented artificially by using
an evocative name for the objects, instead of modeling the field values. This does
not mean that these card instances do not have the arank and asuit fields, it just
means this detail has been elided from the diagram.

2.5 Escaping References

The use of the visibility restrictions for fields using the private keyword provides
a basic level of encapsulation, but it by no means ensures an iron-clad protection of
internal structures. We explore this problem by returning to the issue of storing an
aggregation of Card objects within an instance of a beck object. Let us assume we
decided to implement a Deck as a list of cards using Java’s ArrayList type.’

public class Deck {
private List<Card> aCards = new ArrayList<>();

public Deck () {
/+ Add all 52 cards to the deck */
/+ Shuffle the cards */

}

public Card draw () {
return aCards.removelLast ();

}

So far, the only way to use an instance of Deck from code outside the class is
to draw a card from the deck: there are no other members (methods or fields) that
could be referenced outside the class. The class is thus well encapsulated, but also

9 It may appear that stack could be a better choice, but I prefer to avoid this type because its
implementation is victim of a design flaw discussed in Chapter 7.
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limited it the services it can offer. Let us assume the client code needs to inspect the
content of the deck. We could simply add a getfer method to the class:

public class Deck ({
private List<Card> aCards = new ArrayList<>();

public List<Card> cards () {
return aCards;

}

Unfortunately, this solution solves the problem of providing access to the content
of the deck at a great cost: it allows a reference to the private internal list of cards to
escape the scope of the class, thus granting access to internal elements of the class
from outside the class. For example:

Deck deck = new Deck();

List<Card> cards = deck.cards();
cards.add (new Card(Rank.ACE, Suit.HEARTS));

Here, the reference to the list of cards held within an instance of bDeck escaped
into the scope of the client code, which can then use it to mess things up, for example
by adding an additional Ace of Hearts.

Clearly, declaring fields private is insufficient to ensure good encapsulation. If a
class is well encapsulated, it should not be possible to change the data stored by an
object without going through one of its methods. In turn, to achieve this encapsula-
tion quality, it is also necessary to prevent references to internal structures to escape
the scope of the class. There are three main ways in which a reference to a private
structure can escape the scope of its class: returning a reference to an internal ob-
ject, storing an external reference internally, or leaking references through shared
structures. '

Returning a Reference to an Internal Object

This problem is demonstrated above through the use of the getter method. It is not
a good idea to automatically supply getters and setters for each field because, as in
this case, it may result in a degradation of encapsulation. Figure 2.3 shows the effect
of this escape.

Although an object is a collection of variables, in the context of design, these vari-
ables correspond to an abstraction. Having a class that is mostly accessed through
getters and setters points to a design weakness, because the abstraction the object
represents is not effective. This problem is also known as the INAPPROPRIATE INTI-
MACYT antipattern, because its symptom is that classes “spend too much time delving
in each others’ private parts” [4]. To the extent possible, objects should interact with
each other using methods that involve abstractions above individual instance vari-

10 A fourth, more indirect, way is to use metaprogramming. See Section 5.4.
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:Deck

main:

aCards= —
deck = —
:List<Card>
cards = —

Fig. 2.3 Effect of leaking a reference outside the class scope

ables. In the case of the Deck class, this means prohibiting access to the internal list
of cards, which constitutes a “private part”.

Storing an External Reference Internally

The problem with returning a reference to an internal object is that this reference
becomes shared by the client code. A similar problem is to introduce this sharing
by using a reference to an external object to initialize the internal state of another
object. For example, if we have a setter method for the content of the deck:

public class Deck {
private List<Card> aCards = new ArrayList<>();

public void setCards (List<Card> pCards) {
aCards = pCards;
}
}

the reference will already be escaped as soon as it is assigned to the field:

List<Card> cards = new ArrayList<>();

Deck deck = new Deck();

deck.setCards (cards) ;

cards.add (new Card(Rank.ACE, Suit.HEARTS));

Here, we can corrupt the state of the deck from the scope of the client code, for
example by adding an Ace of Hearts. From an object graph perspective, the outcome
of this code is similar to the one caused by leaking a reference through a getter
method, as illustrated in Figure 2.3.

A similar version of this problem is to set the content of the deck from a con-
structor, as opposed to a setter method:

public class Deck {
private List<Card> aCards;

public Deck (List<Card> pCards) {
aCards = pCards;

}
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Although the leak uses a different type of programming language element (construc-
tor vs. setter method), the result is identical.

Leaking References Through Shared Structures

The issue of escaping references is complex because references can escape through
any number of shared structures, which may not always be obvious. Although con-
trived, the following example shows how this could come about:

public class Deck {
private List<Card> aCards = new ArrayList<>();

public void collect (List<List<Card>> pAllCards) {
pAllCards.add (aCards);
}
}

with the corresponding client code:

List<List<Card>> allCards = new ArrayList<>();
Deck deck = new Deck();

deck.collect (allCards);

List<Card> cards = allCards.get (0);

cards.add (new Card(Rank.ACE, Suit.HEARTS));

:Deck

aCards= —

main:
:List<List<Card>>

deck =

elementData =

allcards =

cards =

:List<Card>

Fig. 2.4 Effect of leaking a reference through a shared structure

Figure 2.4 illustrates the result. Unfortunately, automatically detecting escaping
references is a difficult program analysis problem, and there currently does not exist
any production tool that can accomplish it for Java. Preventing the escape of ref-
erences from the class scope is currently a manual process that relies on rigourous
programming and code inspection practices. Section 2.7 introduces techniques for
exposing some carefully selected information encapsulated by an object, without
leaking references to internal structures.
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2.6 Immutability

One of the major design insights of this chapter is that to ensure good encapsulation,
it should not be possible to modify the internal state of an object without going
through its methods. Section 2.5 discussed the issue of escaping references, and
how they threaten encapsulation. There is, however, one situation where leaking
a reference to an internal object is harmless: when the object is immutable (i.e.,
impossible to change). Let us consider the following code:

class Person {
private String aName;

public Person(String pName) {
aName = pName;

}

public String name () {
return aName;

}

public class Client {

public static void main(String[] args) {
Person person = new Person ("Anonymous");
String name = person.name () ;

}
}

The implementation of class Person clearly violates the advice given in Section 2.5
(of not returning references held in private fields), given that Person.name () re-
turns a reference to the value of an instance variable. We can also represent this
situation with an object diagram (Figure 2.5):

:Person

main: /
aName = —
person = —
name = — :String

value = "Anonymous"

Fig. 2.5 Illustration of a shared reference to a string instance

However, a crucial notice in the reference documentation of the st ring library type
changes things considerably:

Strings are constant; their values cannot be changed after they are created. [...] Because
String objects are immutable they can be shared.
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Because it is not possible to change the data encapsulated by a string instance
after its creation, sharing a reference to a st ring that forms the internal data encap-
sulated by an other object is harmless, as it will not be possible to change the object
using the reference. This applies to any immutable object.

Objects are immutable if their class provides no way to change the internal state
of the object after initialization. By extension, I call a class that yields immutable
objects an immutable class."' Unfortunately, in Java and most other programming
languages, there is no mechanism to guarantee that a class yields immutable ob-
jects. For the designer of a class, the only way to ensure immutability is to carefully
design the class to prevent any modification (e.g., by providing no setter methods,
leaking no reference, etc.). When relying on library classes (such as st ring), unless
we are willing to personally inspect the source code of the class, we have to trust
the documentation. Generally speaking, immutable objects have many advantages.
In the context of this chapter, the immediate benefit is to support sharing informa-
tion encapsulated in an object without breaking encapsulation. Chapter 4 provides
additional insights that can help with the design of immutable classes. For now, it is
sufficient to say that immutability is a desirable design property in many cases.

Let us conclude this introduction to immutability by defining class card to be
immutable. First, we rely on our two enumerated types Rank and suit which we
assume to be immutable.!?> With the following declaration, class card will be im-
mutable:

public class Card {
private Rank aRank;
private Suit aSuit;

public Card(Rank pRank, Suit pSuit) {
aRank = pRank;
asSuit = pSuit;

}

public Rank getRank () {
return aRank;

}

public Suit getSuit () {
return aSuit;

}

In this definition of the class, the only way to set the values of the two instance
variables is through the constructor call which, by definition, is only executed once
for each object. The fields are private, so they cannot be accessed from outside the

11 This is a slight abuse of language because, technically speaking, it makes no sense for a class
to be immutable. However, immutable class is a more convenient term than class that yields im-
mutable objects.

12 Simple enumerated types, which only enumerate values, are immutable. Although it is tech-
nically possible to define enumerated types that are not immutable, this is not a good idea. See
Chapter 4.
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class. There are only two methods. Although they are public, neither changes (or
mutates) the state of the object. Finally, although the methods return a reference to
the content of a field, the type of these fields is immutable, so it will not be possible
to change the state of the referenced objects in any case. The class is thus immutable.

Code Exploration: JetUML - Rectangle
Creating objects derived from immutable objects.

In addition to its generated methods (e.g., x (), y ()) and user-defined meth-
ods (e.g., maxX (), maxY ()), the interface of this record type also includes
methods that create new Rectangle instances as derivatives of the implicit
parameter. For instance, translated (int, int) returns a new instance of
Rectangle that is a translated version of the implicit parameter. The method
is called translated instead of translate, because translate would im-
ply the translation of the implicit parameter. This approach is necessary be-
cause, this record is intended to be immutable, so it is not possible to translate
the implicit parameter. The pattern of “modifying” an immutable object by re-
turning a modified version of the (unmodified) implicit parameter is common.
The library class string provides many examples, such as substring (int),
which returns a new St ring instance that is a substring of the object on which
the method is called.

2.7 Exposing Internal Data

In many cases the objects of the classes we define will need to expose part of the
information they encapsulate to other objects. How can we do this without breaking
encapsulation? As often in software design, there are different options, each with its
strengths and weaknesses. For the sake of discussion, let us consider that we want
to design our Deck class so that it is possible to find out what cards are in a deck.
public class Deck {

private List<Card> aCards = new ArrayList<>();

}

As discussed above, adding a getter method that simply returns acards is out
of the question, as this allows code outside the class Deck to modify the internal
representation of a Deck instance.

Extended Interface
One solution is to extend the interface of the class to include access methods that

only return references to immutable objects. In our case, we could accomplish this
goal by adding two methods to the pDeck class:
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public int size() {
return aCards.size();

}

public Card cardAt (int pIndex) {
return aCards.get (pIndex);

}

If class card is immutable, this solution fulfills its mandate. However, it is somewhat
inelegant if client code typically needs to access all the cards in the deck. In such a
situation, the code would become cluttered with calls to size () and for loops going
over all indexes. Code might also need to be written to check that the argument to
cardat is not out of bounds.

Returning Copies

Another option, which mimics returning a reference to the field acards without
breaking encapsulation, is to return a copy of the list stored in acards. Thus, we
could add a new method:

public List<Card> cards () {
return new ArrayList<> (aCards);

}

This code relies on the behavior of the constructor ArrayList (Collection),
which creates a new ArrayList and initializes this list with all the elements in the
collection, in the same order. Thus, a client would receive a reference to a different
list of cards, with the same cards, as illustrated in Figure 2.6.

:Deck :ArrayList

main: / card1:Card
aCards= — elementData = —

deck = —

cards = _4\’ :ArrayList
card2:Card

elementData = —

Fig. 2.6 Reference to a copy of a list of cards

Assuming Ccard is immutable, we have a valid solution to expose the content of
a Deck to clients. Figure 2.6 shows the result of executing:

public static void main(String[] pArgs) {
List<Card> cards = deck.cards();

}
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We see that it is not possible to change the internal state of beck from a reference
to its cards. There are other strategies for returning a copy of a data structure or a
wrapper for it. Ultimately, the details of the implementation do not matter as much as
the central idea, which is to return a different object that has all the same information
as the internal structure we wish to keep encapsulated.

Although it looks like a simple idea, copying objects is actually a tricky topic,
because it requires deciding how deep to copy the object graph. So far, we assumed
that card objects were immutable, so it was sufficient to perform a shallow copy.
A shallow copy of a list is a copy of the list with shared references to the ele-
ments in the original list (that is, the elements are not copied). But what if card
instances were mutable? In this case the above solution would not offer good en-
capsulation, because it would become possible to change the state of a deck without
going through its interface, for example:
public static void main(String[] pArgs) {

Deck deck = new Deck();

deck.cards () .get (0) .setSuit (Suit.HEARTS) ;

}

With mutable card instances, to implement the copying solution correctly, we
need to go one step further and copy all cards when we copy the list of cards encap-
sulated within a Deck instance. In turn, this introduces a new requirement, namely,
to find a clean way to copy card objects.

A common technique for copying objects is to use a copy constructor. A copy
constructor takes as argument an object of the same class, and (usually) copies
matching field values:
public Card(Card pCard) {

aRank = pCard.aRank;

aSuit = pCard.aSuit;
}

In fact, the code above, where we use new ArrayList<>(aCards), is an example
of a copy constructor for ArrayList.!> To perform a deep(er) copy of our list of
cards now becomes slightly more involved:
public List<Card> cards () {

ArrayList<Card> copy = new ArraylList<>();

for (Card card : aCards) {

copy.add (new Card(card));
}

return copy;

}

However, this extended solution ensures that encapsulation would be preserved
even with mutable card objects. Java provides other mechanisms that support copy-
ing objects, including its cloning mechanism (see Section 6.6), metaprogramming
(see Section 5.4) and its serialization mechanism (not covered in the book).

13 This constructor for ArrayList has a formal parameter of type Collection, which is a super-
type of ArrayList. Hence, it is more general than a strict copy constructor, which would have
ArrayList as its formal parameter. However, these variants are closely related.
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Other Strategies

Copying objects is only one of many strategies for exposing information internal to
an object while maintaining encapsulation. The Java class library provides another
option through the use of unmodifiable view collections. An unmodifiable view is
an unmodifiable wrapper for an underlying collection of objects. For example, the
library method Collection.unmodifiableList (List) returns an unmodifiable
wrapper around a list. As an alternative to copying a list, we could do:

public List<Card> cards () {

return Collections.unmodifiableList (aCards);

}

Other strategies will be covered later in the book. These include iterators (see
Section 3.5) and streams (see Section 9.6).

Code Exploration: JetUML - Diagram
Using unmodifiable collections in practice.

A Diagram object holds a collection of root nodes and a collection
of edges. Client code can access these collections through the methods
rootNodes () and edges (). These two methods return the correspond-
ing collection wrapped in an unmodifiable view using the library method
Collections.unmodifiablelList.

2.8 Input Validation

One of the benefits of encapsulation is to make it difficult or impossible for client
code to corrupt the value of a variable. Following the principles and guidelines pre-
sented in this chapter helps us achieve this goal. Let us consider the following im-
plementation of class card.

public class Card ({

private Rank aRank;
private Suit aSuit;

public Card(Rank pRank, Suit pSuit) {
aRank = pRank;
aSuit = pSuit;

}

public Rank rank() {
return aRank; }

public Suit suit () {
return aSuit; }
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The encapsulation provided by this class is very good, but there remains a crack in
the shell it provides: it is possible to create a new card with a null reference:

Card card = new Card(null, Suit.CLUBS);

For most use cases where a representation of a playing card is required, this would be
incorrect. At least, I am not aware of any card game that involves a “null of Clubs”.
Section 4.4 provides an extended discussion of the issue of null references, but for
now we focus on the general problem of avoiding the creation of an invalid instance
of class card. For this purpose, one strategy is to modify the code that provides
our functionality of interest so that it checks that the input is valid, and reports an
error otherwise. In Java we typically use exception handling for this purpose (see
Section A.8 in the appendix):

VE S

* ...
* @throws IllegalArgumentException 1f pRank or pSuit is null
*/
public Card(Rank pRank, Suit pSuit) {
if (pRank == null || pSuit == null) {
throw new IllegalArgumentException () ;

}
aRank = pRank;
aSuit = pSuit;

With this code, any attempt to create a Card instance with a null reference for
either of the two fields will result in an exception being thrown. When an exception
is thrown, the execution of the constructor does not complete normally, and thus
does not return the newly created object. For this reason, it is now impossible to
obtain an invalid card object by calling the class’s constructor.

An important consequence of this input validation is that now the null check be-
comes an integral part of the implementation of the constructor. Like any other kind
of functionality, users of the code should be aware of how a method or constructor
behaves in response to its input. For this reason, it is necessary to document this
behavior carefully. In the example above, the information about the exception being
raised is provided using Javadoc’s @throws tag.

It is important to remember that, in object-oriented programming, the object that
is the target of a method call is also an input to the method. As such, this input may
need to be validated as well. Let us consider a slightly more complete version of
the Deck class where we have added an implementation of a draw () method, along
with a method to check whether the deck is empty:
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public class Deck ({
private List<Card> aCards = new ArrayList<>();

public boolean isEmpty () {
return aCards.isEmpty();

}

public Card draw () {
return aCards.removelast ();

}

Calling method draw () on an instance of Deck that contains no card will re-
sult in an exception being thrown by method removeLast, which will propagate
out of method draw (), causing it to terminate abnormally. This situation, how-
ever, is very different from the case above. In our card constructor, we explic-
itly designed our code to detect a null reference being passed as argument, and to
throw an exception in response. The code comment reflects this design decision. In
the case of draw (), the exception is raised because we misused a library method
in our implementation by passing it an invalid input. The resulting exception is
NoSuchElementException. One sloppy way to deal with the situation is to simply
document the exception as follows:

J K *

* ...
* @throws NoSuchElementException if isEmpty ()
*/

public Card draw() {

return aCards.removelast ();

}

This approach, however, has two major drawbacks: it abuses the exception
handling mechanism, and it can violate the principle of information hiding. A
good design principle for exception handling is that exceptions should only be
used for unpredictable situations. However, this is not our situation, because we
can always determine with complete certainty whether the list will be empty
by calling isEmpty ().'* As for information hiding, the reason why propagating
NoSuchElementException violates the principle is that propagated exceptions that
reflect design decisions of internal structures may be puzzling to interpret in the
context of client code. In our case, it is ambiguous what “element” is referred
to by NoSsuchElement. ... Overlooking the documentation, one may erroneously
think that the deck was not empty but somehow an error occurred when retrieving
the card at the top. Although the implications are not dramatic, the encapsulation
of class Deck can be improved by avoiding this information leak. A solution that
avoids both problems is thus to implement an explicit check, similarly to how we
have done with the card constructor. In this case, because the illegal argument is
the implicit argument (the object that is the target of the call), it is clearer to use

14 This discussion assumes a single-threaded execution context. Concurrent programming is out-
side the scope of this book.



36 2 Encapsulation

IllegalStateException. Chapter 4 discusses the concept of object state in more
detail.

Vs
* ...
* @throws IllegalStateException if the deck is empty
*/
public Card draw() {
if (isEmpty()) {
throw new IllegalStateException();
}

return aCards.removeLast () ;

Input validation is one option for ensuring that we only construct valid objects
and use them in valid ways. As usual, this design decision has both benefits and
drawbacks. The main benefit, as we have seen, is that the class is robust: client code
can no longer corrupt the internal values in an object. The consequence, however,
is that we have shifted the responsibility of the client code from input validation to
error handling. Presumably, if the client code is written so that it is possible to raise
an exception, it should also catch this exception:

try {
card = deck.draw();

} catch (IllegalStateException exception) {
// Recover

}

Another important consequence of input validation is that now we have addi-
tional input validation code to test, document, and maintain within our classes. In
some cases, this extra burden may not be justified. For example, if we only create
new cards in one location in the code, where it is clear that no null values are used,
then the error-handling machinery for protecting against the possibility of null in-
puts would be excessive. In the next section, I describe a systematic way to think
about input validity.

Code Exploration: JetUML - Version
Input validation when it is really needed.

The version record represents a specific JetUML release number, for ex-
ample, 2.1. The method parse (String) of this class shows a good exam-
ple of a case where input validation is typically necessary. Because the input
value is read from a file, we do not know what to expect. For example, a
buggy program may have written the file with an invalid version number. The
implementation of parse thus ensures that the input is valid, and throws an
IllegalArgumentException if it is not the case, this time supplying an error
message to the constructor of the exception.
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2.9 Design by Contract

In the previous section, I pointed out the need for input validation to ensure that
client code does not misuse an object. However, input validation may not be nec-
essary if the client code is written in a way that precludes erroneous values. For
example, the following code creates all the cards in the Clubs suit: "

List<Card> clubs = new ArrayList<>();

for (Rank rank : Rank.values()) {
clubs.add (new Card(rank, Suit.CLUBS));

With code like this, no null reference can ever be provided as argument to the
card constructor, and we could consider omitting input validation. Unfortunately,
the fact that the responsibility for ensuring that valid values are used in a program
can rest either on the implementation of a class or on its client code creates a source
of ambiguity. Let us again consider the interface of the card constructor:

public Card(Rank pRank, Suit pSuit)

Without additional information, the following interpretations are possible about
the behavior of this constructor:

o It validates the input and throws an exception if it is null, but this fact is not
documented;

e It validates the input, but does something else if it is null (for example, use a
default value);

e It does not validate the input, expects the client code to only pass valid values,
and breaks in some undefined way if it receives invalid arguments;

» It does not validate the input, and client code can create cards with null values as
long as it does not use a card for which either the rank or suit is null.

Ambiguity of this nature can very easily destroy the quality of a design, render
code incomprehensible, and upset developers using it. Observing that the problem
comes from the ambiguity about what is or should be a legal value for the arguments
of the card constructor, one solution is to define method and constructor signatures
so that the ambiguity is minimized or eliminated.

The idea of design by contract is to follow a principled approach to the specifica-
tion of interfaces. Although, in practice, method signatures already specify much of
what is needed in an interface, they also leave room for ambiguity, as was shown by
the example above. Diligent programmers can help eliminate ambiguities by stating
the precise range of allowed values in a method’s documentation. This is certainly
better than nothing. However, design by contract goes further and provides a formal
framework for reasoning about complete interface information. There is a lot to say
about design by contract, so to keep things tractable I only provide an overview of
a simplified version of the approach.

15 Method values () is a static method available for all enumerated types. It returns an array that
contains all the enumerated values for the type in declaration order.
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The main idea of design by contract is for method signatures (and related docu-
mentation) to provide a sort of contract between the client (the caller method) and
the server (the method being called). This contract takes the form of a set of precon-
ditions and a set of postconditions. A precondition is a predicate that must be true
when a method starts executing. The predicate typically involves the value of the
method’s arguments, including the state of the target object upon which the method
is called. Similarly, postconditions are predicates that must be true when the ex-
ecution of the method is completed.'® Given preconditions and postconditions, the
contract is basically that the method can only be expected to conform to the postcon-
ditions if the caller conforms to the preconditions. If a client calls a method without
respecting the preconditions, the behavior of the method is undefined. In practice,
design by contract is a great way to force us to think about all possible ways to use
a method.

In the sample applications (see Appendix C) I follow a lightweight version of
design by contract where preconditions are specified using Java statements in the
comments using the Javadoc epre tag and postconditions are specified using the tag
@post.

J K *

* @pre pRank != null && pSuit != null
*/

public Card(Rank pRank, Suit pSuit) {
/S

}

It is possible to make pre- and postconditions (and any other predicates) checkable
in Java using the assert statement:

public Card(Rank pRank, Suit pSuit) {
assert pRank != null && pSuit != null;
aRank = pRank;
aSuit = pSuit;

The assert statement evaluates its predicate expression and raises an Asser-
tionError if the result is false.!”

Correctly implemented, design by contract helps prevent the tedious idiom of de-
fensive programming where corner cases (such as null references) are checked for
everywhere in the code. Additionally, the technique supports clear blame assign-
ment while debugging: If a precondition check fails, the client (caller method) is
to blame. If a postcondition check fails, the method being called is to blame. More
generally, assert statements are a simple yet powerful tool to increase code quality
and they can be used anywhere, not just for pre- and postconditions. Whenever an

16 The complete approach also involves the concept of invariants. In theory, invariants are pred-
icates that are expected to remain true at all times. In the practice of design by contract, it is
sufficient for invariants to be true at method entry and exit points.

17" Assertion checking is disabled by default in Java, so to use this properly it is necessary to add
-ea (enable assertions) as a VM parameter when running Java.
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assertion check fails, we know exactly where the problem is, and we can thus save
on debugging time.

A final note about design by contract is that the addition of preconditions to a
method’s interface actually relieves us of the requirement to handle the condition.
Hence, the code below is not properly designed because it both states that null ref-
erences are not a valid input and handles them in a consistent way (by raising an
exception). If a method checks for a certain type of input (like null references) and
produces a well-defined behavior as the result, then this is part of the method’s in-
terface specification. When designing method interfaces, it is important to decide
whether the method will be in charge of rejecting illegal values, or whether these
will be specified as invalid. These are two different design choices. In the same vein,
it must be emphasized that the assert statement is not a compact way to implement
input validation. AssertionErrors are not meant to represent the presence of in-
valid values in a running program. Rather, they point to a design or implementation
flaw in the code.

J K *
* @pre pRank != null && pSuit != null
*/

public Card(Rank pRank, Suit pSuit) {
if (pRank == null || pSuit == null) {

throw new IllegalArgumentException () ;

}
/)

Code Exploration: JetUML - Rectangle
Design by contract in practice.

The methods of record Rectangle provide examples of different types of
preconditions. The methods that take a reference type as argument (for ex-
ample, contains (Point) and contains (Rectangle)) require that this ar-
gument be non-null. Other design decisions were possible. For example, it
would have been possible to accept null as an argument to contains, and
return false when this argument is provided. A downside of this alternative is
that it makes the interface ambiguous: if false is returned, is it because the
point was not contained in the rectangle, or because the point was not actually
a point, but nu11? Section 4.4 provides additional reasons why null values are
best avoided.
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Insights

Code Exploration: Solitaire - Deck

Preconditions on the state of the target object.

The interface to method draw illustrates how preconditions can be a function
of the state of the object. The interface of class Deck requires that the deck
not be empty before draw is called. Here, this precondition can be expressed
in terms of another method, isEmpty () (by negating the return value).

Insights

This chapter focused on how to follow the principles of encapsulation and informa-
tion hiding when defining classes.

Use classes to define how domain concepts are represented in code, as opposed to
encoding instances of these concepts as values of primitive types (an antipattern
called PRIMITIVE OBSESSIONT);

Use enumerated types to represent a value in a collection of a small number of
elements that can be enumerated;

Hide the internal implementation of an abstraction behind an interface that tightly
controls how an abstraction can be used. Declare fields of a class private, unless
you have a strong reason not to. Similarly, declare any method private if it
should not be explicitly part of the type’s interface;

Ensure that the design of your classes prevents any code from modifying the data
stored in an object of the class without using a method of the class. In particular,
be careful to avoid leaking references to private fields of the class that refer to
mutable objects;

To provide information about the internal data in an object without violating
encapsulation, strategies include extending the interface of the class, returning
copies of internal objects, or using unmodifiable views;

Object diagrams can help explain or clarify the structure of complex object
graphs, or how references are shared;

Make classes immutable if possible. In Java, it is only possible to ensure that a
class is immutable through careful design and inspection;

Input validation can be used to ensure that the objects of a class are created
and used properly. However, this extra code comes at a cost as it needs to be
documented, tested, and maintained.

Use design by contract to avoid ambiguity in method signatures, and thereby help
prevent the possibility that client code will misuse an instance of a class.
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Further Reading

Chapter 6 of the book Software Architecture: A Comprehensive Framework and
Guide for Practitioners by Vogel et al. [17] provides a well-organized overview of
the different principles of software design, and how they are related. For a more his-
torical perspective, the seminal paper on the principle of information hiding is Par-
nas’s 1972 On the Criteria to be Used in Decomposing Systems into Modules [12].
The article contrasts two designs for a text-processing system, and argues for the su-
periority of the design that realizes information hiding over a sequential processing
decomposition.

The section titled Enum Types in the Java Tutorial [11] provides additional in-
sights on how enumerated types work. In Item 50 of the book Effective Java [2],
Bloch discusses the creation of defensive copies of internal objects encapsulated by
a class.

The article Applying Design by Contract, by its inventor Bertrand Meyer, pro-
vides an accessible overview of the technique [9].



®

Check for
updates

Chapter 3
Types and Interfaces

Concepts and Principles: Class diagram, coupling, extensibility, function
object, interface, Interface Segregation Principle, interface type, iterator,
polymorphism, reusability, separation of concerns, specification, subtyp-
ing;

Patterns and Antipatterns: ITERATOR, STRATEGY, SWITCH STATEMENT.

In the previous chapter we saw how to define well-encapsulated classes, but conve-
niently left out the question of how objects of these classes would interact. We now
start addressing this question. Interactions between objects are mediated through
interfaces. The term interface is overloaded in programming: it can have different
meanings depending on the context.

Design Context

The examples in this chapter concern the design of a class library to allow client
code to instantiate and use a deck and other collections of card objects to support
the development of card games.

3.1 Decoupling Behavior from Implementation

An interface to a class consists of the methods of that class that are accessible (or
visible) to another class. What methods are accessible depends on programming
language rules that take into account access modifiers and scopes (see Section 2.3).
For now, we define the interface to a class as the set of its public methods (I will
extend this definition in Chapter 7). Let us consider the following code:
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public class Client {
private Deck aDeck = new Deck();

}

public class Deck {

public void shuffle() { ... }
public Card draw() { ... }
public boolean isEmpty () { ... }

}

The interface of class Deck consists of three methods. The code in other classes
can interact with objects of class Deck by calling these and only these methods. Here
we would say that the interface of class peck is fused, or coupled, with the class
definition. In other words, the interface of class beck is just a consequence of how
we defined class Deck: there is no way to get the three services that correspond to
the three methods of the class, without interacting with an instance of class Deck. In
our example, to shuffle the deck, client code will need to invoke method shuffle ()
of a field or local variable of type Deck: there is no other option.

There can be, however, situations in which we may want to decouple the interface
of a class from its implementation. These are situations in which we want to design
the system so that one part of the code can depend on the availability of a service,
without being tied to the exact details of how this service is implemented. Given
that we are designing a library that can be used to build different card games, we
note that many card games require the user to draw cards, but not necessarily from
a standard deck of 52 cards. For example, some games might require drawing cards
from an aggregation of multiple decks of cards, from a set of cards of only one suit,
from ordered sequences of cards, etc. Let us consider the following code that draws
cards from a deck up to a required number.

public static List<Card> drawCards (Deck pDeck, int pNumber) {
List<Card> result = new ArrayList<>();
for (int i = 0; 1 < pNumber && !pDeck.isEmpty(); i++) {
result.add (pDeck.draw());
}
return result;

}

This method can only be used with sequences of cards that are an instance of class
Deck. This is a pity, because exactly the same code could be useful for any object
that has the two required methods draw () and isEmpty (). Here it would be useful
to specify an abstraction of an interface without tying it to a specific class. This is
where Java interface types come in. In Java, interface types provide a specification of
the methods that it should be possible to invoke on an object. With interface types,
we can define an abstraction CardSource as any object that supports a draw ()
method and an isEmpty () method:
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public interface CardSource {
J x*
* Returns a card from the source.
*

* @return The next available card.
* @pre !isEmpty ()
*/

Card draw () ;

J k%
* @return true 1if there is no card in the source.
*/

boolean isEmpty();

This interface declaration' lists two methods, and includes comments that specify
the behavior of each method. The specification of draw () includes the precondi-
tion that the method can only be invoked if isEmpty () is false. This precondition
is provided to support the use of design by contract (see Section 2.9), and takes into
account the existing state of the object. Because interface method declarations are
a specification and not an implementation, details of what the method is expected
to perform are very important. With a method implementation, it could always be
possible to inspect the code (if we have access to it) and infer the specification.
This is not an ideal situation, but it is better than nothing. With interface methods,
though, reverse-engineering what the method does is not possible. In Java terminol-
ogy, methods that do not have an implementation are called abstract methods.> To
tie a class with an interface, we use the implements keyword.

public class Deck implements CardSource {

}

The implements keyword has two related effects:

* It provides a guarantee that instances of the class type will have concrete imple-
mentations for all the methods in the interface type. This guarantee is enforced
by the compiler.

¢ Itcreates a subtype relationship between the implementing class and the interface
type: here we can now say that a Deck is a type of CardSource.

The subtype relation between a concrete class and an interface is what en-
ables the use of polymorphism, namely, the ability to have different shapes. Here,
CardSource is an abstraction that can present itself in different concrete shapes.
Each concrete shape corresponds to a different implementation of the Cardsource
interface.

! There is an important distinction between the general concept of an interface, and the specific
interface construct in Java. When the difference is clear from the context, I simply use the term
interface. When necessary, I use the expression interface type to refer to the Java construct.

2 Prior to Java 8, all interface methods were automatically abstract. With Java 8, this is no longer
true, because interfaces can include default and static methods, which have an implementation.
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For polymorphism to be useful, it is important to remember that according to the
rules of the Java type system, it is possible to assign a value to a variable if the value
is of the same type or a subtype of the type of the variable. Because the interface
implementation relation defines a subtype relation, references to objects of concrete
classes declared to implement an interface can be assigned to variables declared to
be of the interface type. For example, because class Deck declares to implement
interface Cardsource, we can assign a reference to an object of class bDeck to a
variable of type CardSource, as such:

CardSource source = new Deck();

Taking this idea further, this means we can make our implementation of the draw-
Cards method much more reusable:
public static List<Card> drawCards (CardSource pSource, int pNum) {
List<Card> result = new ArrayList<>();
for (int i = 0; i < pNum && !pSource.isEmpty(); i++) {
result.add (pSource.draw());
}

return result;

}

The method is now applicable to objects of any class that implements the card-
Source interface.

Another illustration of the use of polymorphism is the use of concrete vs. abstract
types in the Java Collections Framework.

List<String> list = new ArrayList<>();

List<T> is an interface that specifies the usual services (add, remove, etc.), and
ArrayList is an implementation of this service that uses an array.> But we can
replace ArrayList with LinkedList and the code will still compile. Even though
the details of the list implementation differ between ArrayList and LinkedList,
they both provide the methods required by the List interface, so it is permissible to
swap them. Polymorphism provides two useful benefits in software design:

* Loose coupling, because the code using a set of methods is not tied to a specific
implementation of these methods.

* Extensibility, because we can easily add new implementations of an interface
(new “shapes” in the polymorphic relation).

3.2 Specifying Behavior with Interface Types

Typical design questions related to interfaces include: do I need a separate inter-
face? and what should this interface specify? There are no universal answers to

3 As indicated by the type parameter <T>, interface List<T> is a generic type (see Section A.6
in the appendix). To simplify the presentation, I omit the type parameter when referring to types
within the text when it is clear from the context that a type is a generic type.



3.2 Specifying Behavior with Interface Types 47

such questions, because in each case the task is to determine if interfaces can help
us solve a design problem or realize a particular feature. One good illustration of
both the purpose and usefulness of interfaces in Java is the Comparable<T> inter-
face.

One obvious task to be implemented in the Deck class is to shuffle a deck of
cards. This can be realized trivially with the help of a library method.

public class Deck {
private List<Card> aCards = new ArrayList<>();

public void shuffle() {
Collections.shuffle (aCards);
}
}

As its name implies, the shuffle library method randomly reorders the objects in
the argument collection. This is an example of code reuse because it is possible
to reuse the library method to reorder any kind of collection. Here reuse is easy
because to shuffle a collection, we do not need to know anything about the items
being shuffled.

But what if we want to reuse code to sort the cards in the deck? Sorting, like
many classic computing problems, is supported by many existing quality imple-
mentations. In most software development situations, it would not be worthwhile to
hand-craft one’s own sorting algorithm. The Java collections class conveniently
supplies us with a number of sorting functions. However, if we opportunistically try
the following without further consideration:

List<Card> cards = ...;
Collections.sort (cards);

we are rewarded with a possibly cryptic compilation error.* This should not be sur-
prising, though, because how exactly is a library method supposed to know how we
want to sort our cards? Not only is it impossible for the designers of library methods
to anticipate all the user-defined types that can be written, but even for a given type
like card, different orderings are possible (e.g., by rank, then suit, or vice-versa).

The comparable<T> interface helps solve this problem by defining a piece of
behavior related specifically to the comparison of objects, in the form of a single
compareTo (T) abstract method. The specification for this method is that it should
return O if the implicit argument is equal to the explicit argument, a negative integer
if it should come before, and a positive integer if it should come after. Given the
existence of this interface, the internal implementation of Collections.sort can
now rely on it to compare the objects it should sort. Conceptually, the internal code
of the sort implementation looks a bit like this:

if (objectl.compareTo (object2) > 0)

So, from the point of view of the implementation of sort, it really does not matter
what the object is, as long as it is comparable with another object. This is a great

4 The method sort(List<T>) in the type Collections is not applicable for the arguments
(List<Card>). Results can vary on different compilers.
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example of how interfaces and polymorphism support loose coupling: the code of
sort depends on the minimum possible piece of functionality required from its ar-
gument objects. This is a good general insight on how to define interface types. Ide-
ally, they should capture the smallest cohesive slice of behavior that is expected to
be used by client code. For this reason, many interface types in Java are named with
an adjective that ends in -able, a suffix that means fit to be.... Besides Comparable,
examples include Iterable, Serializable and Cloneable.

To make it possible for us to sort a list of cards, we therefore have to provide this
comparable behavior and declare it with the implements keyword:

public class Card implements Comparable<Card> {
public int compareTo (Card pCard) {
return aRank.ordinal () - pCard.aRank.ordinal();
}
}

This minimal implementation sorts cards by ascending rank, but leaves the order of
suits undefined, which leads to unpredictability. A more useful implementation of
the Comparable interface would provide a well-defined total ordering.

Because Java interfaces are types, the type-checking mechanism that is part of
the compilation process makes it possible to detect that a List <Card> object cannot
be passed to Collections.sort unless the card class declares to implement the
Comparable<Card> interface. How this happens is outside the scope of this book
because it requires a good understanding of the typing rules for Java generic types
(see Section A.6 in the appendix).

Many other library types that have a so-called natural ordering implement
the Comparable interface. This includes string (with lexicographic order) but
also many other pervasive types. In particular, Java enumerated types implement
Comparable by comparing instances of an enumerated type according to their or-
dinal value. With this knowledge in hand, we observe that our implementation of
Card.compareTo, above, actually re-implements reusable behavior provided by the
enumerated types. We thus have an opportunity to simplify our code:

public class Card implements Comparable<Card> {
public int compareTo (Card pCard) {
return aRank.compareTo (pCard.aRank) ;

}

Using small interfaces encourages the respect of a software design principle
called separation of concerns. The idea of separation of concerns is that one ab-
straction should map to a single concern (or area of interest) for developers. In
designs that do a poor job at separation of concerns, we find concerns to be ran-
gled within an abstraction (a method for example), and/or scattered across multiple
different abstractions. Here the use of the comparable interface is a good example
of effective separation of concerns: the code to compare cards is entirely contained
within a clearly defined and identified abstraction (the compareTo method), which
does only one thing.
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3.3 Class Diagrams

Designs where the important concerns revolve around the definition of types and
relations between types can become overwhelming to describe in code, and are more
easily captured through a diagram. Class diagrams represent a static, or compile-
time, view of a software system. They are useful to represent how types are defined
and related, but are a poor vehicle for capturing any kind of run-time property of the
code. Class diagrams are the type of UML diagrams that are the closest to the code.
However, it is important to remember that the point of UML diagrams is not to be
an exact translation of the code. As models, they are useful to capture the essence
of one or more design decisions without having to include all the details.

Class diagram have an extensive associated notation. In a class diagram, there
is typically more going on than, say, in an object diagram. I only use a subset of
the notation in this book. The Further Reading section includes references for UML
class diagrams. Figure 3.1 shows the main concepts used in this book. In the fig-
ure, all quotes are taken from The Unified Modeling Language Reference Manual,
2nd edition [15]. The interpretation of the concepts of aggregation, association, and
dependency will become clearer as we progress through the chapters. For now, it
is sufficient to know that these concepts represent that two classes are somehow re-
lated. The concept of navigability, represented with an arrow head, models how code
supports going from objects of one type to objects of another type. Navigability can
be unidirectional (as shown), bidirectional, or unspecified.

«interface» Interface: “A coherent set of public
MoreGeneralinterface features and obligations.”

Operation
P T method1(): ReturnType

Generalization: “A taxonomic
Class: “The descriptor relationship between a more general

for a set of objects that «interface» element and a more specific element.”
share the same MoreSpecificinterface
attributes, operations.”

method2(): void Realization: “The relationship between

[-i/ a specification and its implementation.”

Attribute
ConcreteClass
LA
aElement .
-field: FieldT:
OtherClass (< -...{ e nieidiype K>——— Element

/ +staticMethod(): ReturnType \

+ method3(): void .

0 Aggregation

Dependency: “A relationship
between two elements in which a Association: “The semantic

change to one element may affect relationship between two or more
or supply information needed by AssociatedClass classifiers that involves connections

the other element.” among their instances.”

Fig. 3.1 Selected notation for class diagrams
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Figure 3.2 shows an example of a class diagram that models some of the key

relations between the design elements for a card game that we have seen so far. We
can observe the following:

- «interface»
Collections Comparable<T>
<T> sort(List<T>):void compareTo(T):int
N ZAN
1 i 1 «enum»
Deck Rank
0..52 aRank
shuffle():void Card " asut
draw():Card
1 «enum»
Suit

Fig. 3.2 Sample class diagram showing key decisions in the design of a peck class

The box that represents class Card does not have attributes for aRank and suit
because these are represented as aggregations to Rank and Suit enumerated
types, respectively. It is a modeling error to have both an attribute and an ag-
gregation to represent a given field.

The methods of class card are not represented. Because they are just the con-
structor and accessors, I judged this to not be very insightful information. It
would not be wrong to include them, but it might clutter the diagram.

In the UML, there is no good way to indicate that a class does not have a certain
member (field or method). To convey the information that card does not have
setters for the two fields, it would be necessary to include this using a note.
Representing generic types is a bit problematic, because in some cases it makes
more sense to represent the type parameter (Comparable<T>) and in some other
cases it makes more sense to represent the type argument (Comparable<Card>).
In this diagram I went with the type parameter because I wanted to show how
Collections depends on Comparable in general.

To indicate that a class member (field or method) is static, we underline it.

The model includes cardinalities to indicate, for example, that a deck instance
will aggregate between zero and 52 instances of card. Typical values for an
association’s cardinality include a specific number (for example, 1), the wildcard
» (which means zero or more), and ranges such as M. .N (which means between
M and N, inclusively).
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3.4 Function Objects

In practice, an interface type often defines only a subset of the operations of the
classes that implement it. This scenario is exemplified by Comparable: the com-
plete implementation of card comprises methods, such as suit () and rank (), that
add to the slice of behavior required by the comparable interface. There are other
situations, however, where it is convenient to define classes that specialize in imple-
menting only the behavior required by a small interface with only one method.

Let us continue with the problem of comparing cards. Implementing the Compara-
ble interface allows instances of Card to compare themselves with other instances
of card using one strategy, for example, by comparing the card’s rank, and using
suits to break ties. What if we are designing a game where we need to sort cards
according to different strategies, and occasionally switch between them? One could
tweak the code of compareTo, for instance by relying on a global variable that stores
the required strategy and switching the comparison strategy based on this flag. How-
ever, harebrained schemes of this nature have many drawbacks. In our case, using
such a flag variable would degrade the separation of concerns between representing
a card and knowledge of how the card should be sorted, and generally make the code
harder to understand.

In fact, the use of this kind of switching is considered a design antipattern called
SWITCH STATEMENTY.> A more promising solution is to move the comparison code to
a separate object. This solution is supported by the Comparator<T> interface. The
abstract method in this interface is compare (as opposed to compareTo).0

int compare (T pObjectl, T pObject2)

As for Comparable, Comparator is a generic type, so in the above declaration,
T refers to a type parameter that must be replaced by a concrete type (for ex-
ample, type card). The most notable difference between method compare of
interface Comparator and method compareTo of interface Comparable is that
Comparator#compare takes two arguments instead of one. Indeed, its specification
is very similar to that of Comparable#compareTo, except that instead of compar-
ing the implicit parameter (the this object) with an explicit parameter, it compares
two explicit parameters with each other. Not surprisingly, library methods were also
designed to work with this interface. For example: Collections.sort:

Collections.sort (List<T> list, Comparator<? super T> c)

This method can sort a list of objects that do not necessarily implement the
Comparable interface, by taking as argument an object guaranteed to be able to
compare two instances of the items in the list. One can now define a rank first com-
parator:

3 There is evidence of the antipattern whether or not an actual switch statement is used, because
the latter can be emulated through i f—e1se statements.

6 As of Java 8, this interface defines an intimidating list of methods. These are not important here.
In Chapter 9 I revisit this interface to explain how we can leverage some of the additional methods.
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public class RankFirstComparator implements Comparator<Card> {
public int compare (Card pCardl, Card pCard2) {
/* Comparison code */
}
}

and another suit first comparator:

public class SuitFirstComparator implements Comparator<Card> {
public int compare (Card pCardl, Card pCard2) {
/% Comparison code */
}
}

and sort with the desired comparator:’

Collections.sort (aCards, new RankFirstComparator());

In this scenario, an instance of Comparator is an object that only provides the
implementation for a single method. Such objects are referred to as function objects.
Their interface typically maps one-to-one to that of an interface type.

The use of comparators (and similar function objects) introduces many inter-
esting design questions and trade-offs. First, if comparator classes are defined as
standalone top-level Java classes, the code of their compare method will not have
access to the private members of the objects they compare. In some cases the in-
formation available from getter methods is sufficient to implement the comparison,
but in other cases implementing the compare method will require access to private
members.

In such cases, one option to give comparator classes access to private members
of the classes they compare is to declare the comparator classes as nested classes
(see Section 4.9) of the class that defines the objects being compared:

public class Card {
static class CompareBySuitFirst implements Comparator<Card> {
public int compare (Card pCardl, Card pCard2) {
/# Comparison code */

}

}

To client code, the impact of this change in design is minimal: the only difference is
the additional qualification of the name of the comparator class:

Collections.sort (aCards, new Card.CompareBySuitFirst());

Another option is to define comparator classes as anonymous classes. In cases
where the comparator is only referred to once, this makes a lot of sense:

7 As of Java 8, method sort is also available on the collection (no ‘s’) interface. However, to
preserve the symmetry with the use of the comparable<T> interface, I retain this version.
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public class Deck ({
public void sort () {
Collections.sort (aCards, new Comparator<Card> () {
public int compare (Card pCardl, Card pCard2) {
/* Comparison code */

1)

A third option is to use a lambda expression. Lambda expressions are a form of
anonymous functions. These and related mechanisms form the topic of Chapter 9.
However, since it is possible to implement a very close equivalent to the code above
using a lambda expression, I provide it here. The basic idea is based on the obser-
vation that to supply a comparator, not only do we not need to name a class because
it is only an implementation of the Comparator interface, we also do not need to
name the method, because it is only an implementation of compare. How this code
actually works is explained in Chapter 9.

public class Deck {

public void sort () {
Collections.sort (aCards, (cardl, card2) ->
cardl.rank () .compareTo (card2.rank ()));

In the two examples above, we have brought back the problem of encapsulation,
because the code in the anonymous class that implements the comparison is defined
outside of the card class. We can solve this with the help of a static factory method.
The term factory method refers to methods whose primary role is to create and return
an object.

public class Card {
public static Comparator<Card> createByRankComparator () {
return new Comparator<Card> () {
public int compare (Card pCardl, Card pCard2) {
/+ Comparison code */
}
}i

A final question is whether a comparator should store data. For example, instead
of having different comparators for sorting cards by rank and suit, we could define a
UniversalComparator that has a field of an enumerated type that stores the desired
type of comparison. Although this solution is workable, it can lead to code that is
harder to understand, for reasons explained in Section 3.7 and further discussed in
Chapter 4.
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3.5 Iterators

A common requirement when designing a data structure is to gain access to a collec-
tion of encapsulated objects without violating the principle of information hiding.
For example, if we are designing a type to represent a deck of cards, we may need
to give client code access to the cards in the deck. This problem was originally in-
troduced in Section 2.7, where the solution proposed was to return copies of the
internal data. For example, to return a copy of the list of cards encapsulated within
a Deck instance. One issue with this solution is that it can subtly leak information
about the way a structure is stored internally (or at least, give the impression that
it leaks this information). For example, if we choose to return a deck’s cards as a
List:

public List<Card> cards() { ... }

code using the Deck may start relying on the operations defined on a list, or make
the assumption that cards are internally stored in a list within a Deck. To achieve
an even higher level of information hiding, it would be better to allow client code
access to the internal objects of another object, without exposing anything about the
internal structure of the encapsulating object. This design feature is supported by
the concept of an iterator. The concept of an iterator is very general, and iterators
are employed in many programming languages.

In Java, iterators are easy to use, but understanding how they work requires being
aware of a careful coordination between at least three types of objects. Iterators also
provide an example of the use of interfaces types and polymorphism.

To support iteration we must first have a specification of what it means to iterate.
As usual, this specification is captured in an interface: in this case the Iterator<T>
interface. This interface defines two abstract methods: hasNext () and next (). So,
according to the rules of subtyping, once a piece of code gains access to a reference
to an object of any subtype of Iterator, the client code can iterate over it, inde-
pendently of what the actual class of the object is. To enable iteration over the cards
of a Deck, let us simply redefine the cards method to return an iterator instead of a
list:

public Iterator<Card> cards() { ... }

This way, to print all the cards in a deck, we can do:

Iterator<Card> iterator = deck.cards();
while (iterator.hasNext ()) {
System.out.println(iterator.next ());

}

Although this design achieves our decoupling goal, we can generalize it to great
effect. A first important insight is that in most software systems there will be dif-
ferent types of objects that it would be useful to iterate over. Lists are an obvious
example. In our case we also have a Deck. The issue with the iterator system as
we have it now, though, is that different classes define a different way to obtain
an iterator. For class List, it is through the method iterator (). For our Deck
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class, it is through method cards (). Although the behavior in both cases is identi-
cal (return an iterator), the name of the service is different. We can solve this issue
with another interface. The Iterable<T> interface specifies the smallest slice of
behavior necessary to make it possible to iterate over an object. To be able to poly-
morphically iterate over an object, the only thing we need from this object is that
it supplies an iterator. So the only abstract method of the Iterable<T> interface is

Iterator<T> iterator().

We can make our Deck class iterable by implementing the Iterable<Card>
interface and renaming the cards () method to iterator ():

public class Deck implements Iterable<Card> {

public Iterator<Card> iterator()

{

This way, an instance of Deck can be supplied anywhere an Iterable interface
type is expected. Figure 3.3 shows the main elements of the iterator design so far.

Fig. 3.3 Class diagram for

the design of an iterator

«interface»
Iterable<Card>

iterator():Iterator<Card>

JA

Deck

iterator():lterator<Card>

«interface»
Iterator<Card>

7] hasNext():boolean

next():Card

One of the main ways to use Iterable objects in Java is in an enhanced for

loop, also know as a foreach loop:

List<String> list = ...;

for (String string : list) {
System.out.println(string);

}

The above code is just syntactic sugar for:

List<String> list = ...;
for (Iterator<String> iter = list.iterator();
String string = iter.next();

System.out.println(string);

}

To iterate over a deck, we can now do:

for (Card card : deck) {
System.out.println (card);

iter.hasNext ();) {
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The way the enhanced for loop works is that, under the covers, it expects the
rightmost part of the loop head to be an instance of a class that is a subtype of
Iterable (or an array type, which is a special case).

The final issue to solve to complete our iterator-based design for Deck is to find
a way to return an instance of Iterator when the iterator () method is called.
Although it would be possible to hand-craft our own user-defined class that im-
plements the Tterator<Card> interface, we can observe that the List contained
within a Deck is also Iterable, and the Iterator it returns does everything that
we want.

public class Deck implements Iterable<Card> {
private List<Card> aCards;

public Iterator<Card> iterator () {
return aCards.iterator();

}

Strictly speaking, this idiom can violate the encapsulation of class Deck because
interface Tterator<T> includes a method remove () that can be optionally imple-
mented (and which is implemented by the iterator returned by ArrayList). Con-
sistent with the book’s goal of focusing on general design concerns with minimum
coverage of the libraries, I overlook this case. In the context of the book, it can be
assumed that Tterator#remove () is not used. For production code, how to best
avoid the encapsulation problem would depend on the context. One option is to
return the iterator obtained from an unmodifiable view of the list with a call such as:

return Collections.unmodifiablelList (aCards) .iterator ().

Representing the implementation of the Iterator interface in the UML is not
obvious given our reliance on an instance of an unknown concrete type. Although
we know that the type returned by List#iterator() is some subtype of the
Iterator interface, we do not know the name of the class that ultimately imple-
ments this interface. In fact, this may be an anonymous class, in which case, by
definition, there is no name. So the fact to reckon with at this point is that we do
not know the type. However, we cannot really write Unknown in a class in a class
diagram, because this would indicate that the name of the class is known, and it is
“Unknown”, which is confusing. For now, I will assume that the type is anonymous
and indicate this fact with the UML stereotype «anonymous», leaving the name
blank. In the UML, a stereotype is a variation on an element type, with the name of
the variation placed in French quotes.

3.6 The ITERATOR Design Pattern

The previous section introduced the use of iterators as a way to provide access to
a collection of objects encapsulated within another object without violating the in-
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«interface» «interface»
Iterable<Card> Iterator<Card>
iterator():Iterator<Card> /7 hasNext():boolean
7 " | next():Card
: A
Deck ’ .
iterator():Iterator<Card> «anonymous»

Fig. 3.4 The complete iterator design

formation hiding properties of this object. This solution is a common design pattern
called, not surprisingly, the ITERATOR. The context for ITERATOR is to

Provide a way to access the elements of an aggregate object sequentially without exposing
its underlying representation. [7]

The solution template for ITERATOR can be best captured by the class diagram in
Figure 3.5, which is an abstraction of the solution presented in Figure 3.4.

«interface» «interface»
Abstractlterable<T> ] Abstractiterator<T>
iterator():Abstractlterator<T> hasNext():boolean
~ next():T
E PR
Concretelterable Concretelterator

Fig. 3.5 Solution template for ITERATOR

An important difference between the solution template in Figure 3.5 and its con-
crete realization in Figure 3.4 is that the solution template does not refer to the
Java library interfaces Iterable and Iterator. Although they can be supported
by libraries, design patterns are abstract solution elements that can be realized in
code independently of specific library implementations. For this reason, the solu-
tion template simply indicates that to apply the ITERATOR pattern in practice, one
needs a type to fulfill the roles of AbstractIterable and AbstractIterator,
and similarly with their concrete implementation. This being said, in Java there are
very few variants of ITERATOR. Because only subtypes of Tterable can be used in
the enhanced for loop, there is a strong incentive to actually use Iterable as the
AbstractIterable, which forces the use of Iterator as the AbstractIterator.
The remainder of the mapping is almost automatic, as the ConcreteIterable is
whatever one wants to iterate over, e.g., the Deck class.
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How to create the ConcretelIterator is one design decision that yields more
possibilities, but the most convenient option is often to simply return the iterator
supplied by the underlying data structure (e.g., ArrayList#iterator () ), possibly
wrapped in an immutable view (see Section 3.5). In some cases, it might be neces-
sary to combine elements from various collections and iterate over them, or iterate
in an order different from that of the collection holding the elements to iterate over.
In such cases, the simplest option is often to create a new collection with the desired
elements in the right order, and to return that collection’s iterator.

Code Exploration: Solitaire - CardStack
A basic application of the ITERATOR pattern.

Class cardstack illustrates the simplest possible application of the ITERATOR
in Java. The class represents a stack of cards, which I made it possible to it-
erate over from bottom to top. As expected, the class implements interface
Iterable<Card> and declares a method iterator (). To supply the iterator,
I return the iterator of an immutable view of the the underlying collection.
In the class, an Tterable<Card> is also used to define the type of the argu-
ment to one of the constructor: Cardstack (Iterable<Card>). This decision
maximizes the flexibility of the constructor, by allowing it to take as input any
type of object that can be iterated over for card objects.

3.7 The STRATEGY Design Pattern

One of the major benefits of interfaces and polymorphism is to promote flexible
designs. One example of a flexible design enabled by interfaces is the use of a
Comparator instance by the Collections.sort (...) method, as introduced in
Section 3.4. The use of function objects such as comparators to customize the be-
havior of another part of the code (e.g., the sorting behavior) is recognized as one
application of a more general idea called the STRATEGY design pattern. The context
for STRATEGY is to:

Define a family of algorithms, encapsulate each one, and make them interchangeable. Strat-
egy lets the algorithms vary independently from clients that use it. [7]

This is a very general definition, especially given that there is no agreed-upon def-
inition for what a family of algorithms is. Fortunately, the solution template for
STRATEGY provides a clarification for object-oriented code: algorithms in the same
family implement the same interface.

The STRATEGY looks exceedingly simple. In fact in many cases it can be indis-
tinguishable from a basic use of polymorphism. I find it useful to think of a part of
the design as an application of STRATEGY when that part of the design is focused on
allowing the switch between algorithms. One example, illustrated in Figure 3.7, is
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«interface»
AbstractStrategy

doSomething():void
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Fig. 3.6 Solution template for STRATEGY
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the use of different card comparators for sorting a deck of cards. Another example
is the implementation of different automatic playing strategies, as will be further
discussed in the Code Exploration section below.

Deck

«interface»
Comparator<Card>

compare(Card, Card):int

ByRankComparator BySuitComparator

Fig. 3.7 Sample instantiation of a STRATEGY

Although nominally simple, in practice applying a STRATEGY requires thinking
about many design questions:

* Does the abstractStrategy need one or multiple methods to define the algo-
rithm? Typically the answer is one, but in some cases it may be necessary to have

more methods.

e Should the strategy method return anything or have a side-effect on the argu-

ment?

* Does a strategy need to store data?
*  What should be the type of the return value and/or method parameters, as appli-
cable? Ideally we want to choose these types to minimize coupling between a

strategy and its clients.

Figure 3.7 shows an example instantiation of STRATEGY for the context of com-
paring cards. Here the design of the AbstractStrategy is already decided because
we are reusing the comparator interface. This strategy is purely functional as it
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does not have any side-effect and returns the result of applying the comparison al-
gorithm. At this point it should become clearer that implementing the Comparator
interface as a UniversalComparator that holds a value to decide what kind of com-
parison to do, does not respect the spirit of the STRATEGY because the actual strategy
would be selected by changing the state of an object, as opposed to changing the
concrete strategy object.

Code Exploration: Solitaire - PlayingStrategy
Applying the STRATEGY fo implement game-playing strategies.

In Solitaire, the package auto provides an elaborate example of the STRATEGY
pattern. Interface PlayingStrategy defines a method get LegalMove that is
called by a GameModel instance when the player uses the auto-play feature.
With the auto-play feature, the software makes a decision of how to play the
next move in the game, as opposed to waiting for the user to play a move.
Any class that implements PlayingStrategy can provide a decision-making
behavior for making a move. The package contains two examples of strate-
gies. The NullplayingStrategy never does anything, and always returns
a so-called null move. The purpose of this code is explained in Section 4.4.
The GreedyPlayingStrategy selects the move with the most immediate im-
pact on the game. To implement a different strategy, for example one that
uses probabilities in the decision-making process, we define a new class that
implements PlayingStrategy and use an instance of this new class in the
GameModel.

3.8 Dependency Injection

So far, we have seen how to use interface types so that classes that use a service
can be decoupled from the actual implementation of the service. Continuing with
our example of the comparator, let us say we are designing a version of our Deck of
cards that can be sorted in various ways. Applying the STRATEGY pattern described
in the previous section, our code should look like this:

public class Deck ({

private List<Card> aCards = new ArrayList<>();
private Comparator<Card> aComparator = /# initialize x/;
public void sort () {

Collections.sort (aCards, aComparator);

}

In the code above, various options are possible for initializing the comparator
(that is, the concrete strategy). One option is to call the constructor of the desired
comparator when initializing the field:
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private Comparator<Card> aComparator = new ByRankComparator();

There are two issues with this approach. First, it does not allow the client code to
easily switch the comparison strategy. To switch the comparison strategy, it would
be necessary to modify the source code of the Deck class. Second, this design intro-
duces a dependency between the Deck class and a specific comparator implementa-
tion. Figure 3.8 illustrates the problem.

«interface»
aComparisonStrategy 1 Comparator<Card>

compare(Card, Card): int

ByRankComparator

Fig. 3.8 Introducing a dependency between a client class and an implementation class

One variant of this solution could be to use an anonymous class in the definition
of the comparator:

private Comparator<Card> aComparator = new Comparator<Card> () {
public int compare (Card pCardl, Card pCard2) {
return pCardl.getRank () .compareTo (pCard2.getRank());
}
}i

However, this solution exhibits the same problem as the previous one: it does
not allow us to switch the comparison algorithm easily, and the Deck class is still
coupled to a specific implementation of the comparison. The only difference is that
now this implementation is anonymous.

A solution to both the lack of flexibility of the Deck class and its tight coupling
with the comparison strategy is to decouple the creation of the dependency (here, the
implementation of the comparator) from the creation of the client of the dependency
(here, the Deck class). Instead, we pass in, or inject, the dependency into the client
class.

public class Deck ({
private Comparator<Card> aComparator;

public Deck (Comparator<Card> pComparator) {
aComparator = pComparator;
shuffle();

This technique is called dependency injection. In this way, class Deck only has a
dependency to the interface type Comparator<Card>, and remains decoupled from



62 3 Types and Interfaces

any specific implementation. The trade-off is that client code of the Deck class must
now inject this dependency when creating a Deck:

Deck deck = new Deck (new ByRankComparator());

As is the case for design patterns, dependency injection is a general idea and
there are many different ways to apply it in practice. For example, one could design
various factory methods to instantiate dependency objects, or inject a dependency
using an anonymous class, etc. It is also possible to inject the dependency via a set-
ter method instead of the constructor. This alternative, however, is often inferior be-
cause it creates object state management challenges, discussed in Chapter 4. Finally,
there are also libraries and frameworks available to support advanced dependency
injection scenarios that require a lot of configuration. In this book, however, I stick
to simple applications of dependency injection such as the one illustrated above.

Code Exploration: Solitaire - GameModel
Injecting a concrete strategy into another object.

The concrete PlayingStrategy described in the previous Code Exploration
is injected into the GameModel via its constructor. The application is assem-
bled in method start () of class Solitaire. In this method, we see the cre-
ation of the concrete strategy and its injection into the GameMode1:

GameModel model = new GameModel (new GreedyPlayingStrategy());

3.9 The Interface Segregation Principle

Throughout this chapter we saw the various benefits of defining specialized inter-
faces that specify a small and coherent slice of behavior that clients depend on.
This way, client code is not coupled with the details of an implementation, and
only depends on the methods it actually requires. For example, code that pro-
cesses cards can only depend on a Cardsource interface with two methods, and
can therefore be reusable with any class that can provide these methods. Similarly,
the Collections#sort (...) method works because it can rely on just the fact
that the items in the collection are Comparable. This idea is actually an instance of
a general design principle called the Interface Segregation Principle (ISP). Simply
put, the ISP states that client code should not be forced to depend on interfaces it
does not need.

The idea of the ISP is easier to explain by presenting a situation where the princi-
ple is not respected. We can consider again the code in Section 3.1 where drawCards
takes a Deck as argument:
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public static List<Card> drawCards (Deck pDeck, int pNumber) {
List<Card> result = new ArrayList<>();

for (int i = 0; 1 < pNumber && !pDeck.isEmpty(); i++) {
result.add (pDeck.draw());
}

return result;

}

In Section 3.1 I argued that this was a suboptimal design because it tied an interface
with its implementation. Well, let us say we split the two by declaring an IDeck
interface:

public interface IDeck {
void shuffle();
Card draw();
boolean isEmpty();

}

public class Deck implements IDeck...

which we rely on in drawCards:

public static List<Card> drawCards (IDeck pDeck, int pNumber)

This effectively decouples interface from implementation, and supports the use of
drawCards with arguments that are not strictly instances of Deck. However, this
design also forces drawCards to statically depend on a method it does not need,
namely, shuf f1le. What if we might want to draw cards from a source that cannot be
shuffled? For this reason, the CardSource solution initially presented in Section 3.1
only included methods draw and isEmpty in interface CardSource, and thereby
respected the ISP.

To push on this idea of ISP a bit, let us assume that there might be places in the
code that only shuffle an object. To support this slice of behavior, we would de-
fine an interface shufflable with a single method shuffle (). Figure 3.9 shows a
maximally flexible separation of concerns for class Deck, with three different inter-
faces that capture three cohesive slices of behavior that are supported by class Deck,
and three client code locations (represented by Client1-3) interested in different
combinations of these services.

This design has loose coupling, which is great. However, this loose coupling
has one major disadvantage for cases where a client might be interested in more
than one slice of behavior. This situation is represented in Figure 3.9 by client3,
which needs to both iterate over an Iterable<Card> and draw some cards from
the source. How can we express this combination, since in Java it is only possi-
ble to specify a single type for a variable? For example, if we pass an instance of
CardSource to a method of interest and wish to iterate over the cards, we have to
venture into inelegance:
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Fig. 3.9 Interface segregation in practice

public void displayCards (CardSource pSource) {
if (!pSource.isEmpty()) {
pSource.draw () ;

for (Card card (Iterable<Card>) pSource) {

In fact this is not only inelegant, but also unsafe, because it could be possible to
provide an argument to displayCards that is not a subtype of Iterable. A better
solution to this issue is offered directly by the type system, in the form of subtyping.
In Java, interfaces can be declared to extend each other, with the semantics that if
A extends B, types that implement A must provide implementations for all the meth-
ods declared in B as well, transitively. By extending interfaces, we can more easily
support combinations of services while respecting the ISP. In our scenario, if it is
observed that a lot of the code that uses cardSource also uses Iterable<Card>,
but not the other way around, then we can declare Cardsource to be a subtype of
Iterable<Card>, as illustrated in Figure 3.10.

«interface»

«interface»

Fig. 3.10 Example of interface extension

Iterable<Card> CardSource
Client2  [---> K— -- Client3
iterator():Iterator<Card> draw():Card
isEmpty():boolean
Deck
«interface»
i Shufflable shuffle():void
Client1  [--> K- A
— draw():Card
shuffle():void isEmpty():boolean
iterator():Iterator<Card>
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In principle, the same reasoning could apply in the reverse situation: if we no-
tice that most code that uses Iterable<Card> also uses Cardsource but not the
other way around, it would make sense to declare Tterable<Card> to extend
CardSource. In practice, however, this is not possible because Iterable is a li-
brary type, which it is not possible to modify. For this reason, there are also large
amounts of code that depend on it without depending on Cardsource, rendering the
situation a mere theoretical possibility. Finally, software designs can be hard to get
right immediately. It may be the case that two segregated interfaces end up always
being used together in the client code. In such a situation, it is possible that applica-
tion of the ISP went too far, and it might be worth considering fusing two interfaces
back into one, by collecting all method declarations into a single interface.

Code Exploration: Solitaire - GameModel
Using the Interface Segregation Principle when applying the STRATEGY.

In Solitaire, the STRATEGY is used via interface PlayingStrategy, which
defines a method getLegalMove. To decide how to make a move, a strat-
egy object needs some information about the game. This information is pro-
vided as a parameter to the strategy method. All the information about an
on-going game is stored in an instance of GameModel. This is a large class
which declares both accessor methods and methods that can change the state
of the game. Hence, by passing an instance of GameModel to a strategy ob-
ject, the code of the strategy object would be able to modify the state of the
game. This is excessive coupling, because in the design the playing strategies
are only supposed to compute a move, not actually do the move. To make
this constraint clearer, I used the Interface Segregation Principle as follows.
Class GameModel implements an interface GameMode1view that declares only
the methods of GameModel that provide information about the game without
changing anything. The effect of this decision is to have a type that narrows
the interface of GameMode1 to only include query methods. I then declared the
type of the parameter of get LegalMove to be GameModelView. This way, al-
though it is still actually an instance of GameMode1 that is provided to strategy
objects, the limited interface makes it clear that the code of strategy objects is
only meant to query the state of the game, not change it.

Code Exploration: JetUML - DiagramElement
Organizing interfaces into a hierarchy to serve different usage contexts.

A diagram in JetUML contains different diagram elements that are either
nodes or edges. I used interface types Node and Edge to specify the ex-
pected behavior of these elements. However, certain parts of the code, like
the clipboard class, need to deal with diagram elements in general, indepen-
dently of whether they are nodes or edges. To accommodate this flexibility, I
defined an additional interface, DiagramElement, which is extended by both
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Node and Edge. The behavior for general elements, nodes specifically, and
edges specifically, is thus segregated into different interface types. This allows
the various client code locations to work with the most appropriate abstraction
for the diagram element objects they needs to handle.

Insights

This chapter focused on how to use interfaces and polymorphism to achieve exten-
sibility and reuse.

Use interface types to decouple a specification from its implementation if you
plan to have different implementations of that specification as part of your design;
Define interface types so that each type groups a cohesive set of methods that are
likely to be used together;

Organize interface types as subtypes of each other to create flexible groupings of
behavior;

Use library interface types, such as Comparable<T>, to implement commonly
expected behavior;

Use class diagrams to explore or capture important design decisions that have to
do with how classes relate to each other;

Consider function objects as a potential way to implement a small piece of re-
quired functionality, such as a comparison algorithm. Function objects can often
be specified as instances of anonymous classes, or as lambda expressions;

Use iterators to expose a collection of objects encapsulated within another with-
out violating the encapsulation and information hiding properties of this object.
This idea is known as the ITERATOR design pattern;

Consider using the STRATEGY pattern if part of your design requires supporting
an interchangeable family of algorithms;

Use dependency injection to decouple a client class that uses some abstraction
from the creation of this abstraction;

Ensure that your code does not depend on interfaces it does not need: break up
large interface types into smaller ones if you find that many methods of a type
are not used in certain code locations.

Further Reading

The definitions for the notation of the class diagram shown in Figure 3.1 are adapted
from The Unified Modeling Language Reference Manual [15]. Chapter 3 of UML
Distilled [6] provides an overview of the notation and semantics for this diagram.
The Gang of Four book [7] has the original treatment of the ITERATOR and STRATEGY
patterns.
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Chapter 4
Object State

Concepts and Principles: Object equality, object identity, object life-
cycle, object state (abstract vs. concrete), object uniqueness, optional types,
state diagram, state space;

Patterns and Antipatterns: SPECULATIVE GENERALITYf, TEMPORARY
FIELDY, LONG METHODY, NULL OBJECT, FLYWEIGHT, SINGLETON.

One of the most difficult things to reason about when looking at a program is state
changes. Which operations can have a side-effect? On which path can data flow?
What impacts what? This chapter clarifies what object state is and how we can
manage to keep control over its state in a principled way.

Design Context

In this chapter, I continue the discussion of how to design abstractions to effectively
represent a deck of cards in code (see the Design Context section of Chapter 3 for
details).

4.1 The Static and Dynamic Perspectives of a Software System

There are different ways we can look at a software system. One way is in terms of the
software elements declared in the source code and the relations between them. For
example, a Deck class declares a field acards that is a list of card instances. This
is a static (or compile-time) perspective of the system. The static perspective is best
represented by the source code or a class diagram. A different, but complementary,
way to look at a system, is in terms of objects in a running software system. For
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example, at one point a Deck instance contains three cards, then one card is drawn,
which leads to the instance of Deck containing two cards, etc. This is the dynamic (or
run-time) perspective on the software. The dynamic perspective corresponds to the
set of all values and references held by the variables in a program at different points
in time. It is what we see in a debugger while stepping through the execution of the
code. The dynamic perspective cannot easily be represented by any one diagram.
Instead, we rely on object diagrams, state diagrams (introduced in this chapter), and
sequence diagrams (introduced in Chapter 6). The static and dynamic perspectives
are complementary in software design. Sometimes it is best to think of a problem
and solution in static terms, sometimes in dynamic terms, and sometimes we really
need both. This duality between the static and dynamic perspectives on a software
system is akin to the wave-particle duality for representing the phenomenon of light
in physics:

It seems as though we must use sometimes the one theory and sometimes the other, while
at times we may use either. [...] We have two contradictory pictures of reality; separately
neither of them fully explains the phenomena of light, but together they do.

—Albert Einstein and Leopold Infeld, The Evolution of Physics

To paraphrase for software design: It seems as though we must use sometimes
the one perspective and sometimes the other, while at times we may use either. We
have two complementary pictures of a software system; separately neither of them
fully explains the phenomena of software, but together they do. This chapter focuses
on understanding important dynamic properties of software.

4.2 Defining Object State

An important concept when thinking of a design in terms of run-time objects is
that of object state. Informally, the state of an object refers to the particular pieces
of information the object represents at a given moment. It is generally useful to
distinguish between concrete state and abstract state. The concrete state of an object
is the collection of values stored in the object’s fields. For example, we can consider
a player object which, for now, only holds a score for the player in a scored game
of Solitaire:

public class Player {

private int aScore = 0;

}

The cardinality of the set of possible concrete states for player is the number of
different values that its single field, ascore, can take. Because, in Java, a variable
of type int is allocated 32 bits of storage, the number of different concrete states
that an object of type Player can be in is 232, or about 4 billion states. We usually
refer to the set of possible states for a variable or object as its state space. As soon as
objects have more complex types, the size of the state space explodes dramatically.
For example, the state space of a Deck instance includes all possible permutations
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of any number of cards in the deck, a number in the range of 2.2 x 10%. This is an
enormous number.! With class P1ayer, adding an aName field of type St ring blows
up the size of the state space to something that is only limited by the computing
environment. For this reason, when designing software, it is more practical to think
in terms of abstract states.

An abstract state is an arbitrarily-defined subset of the concrete state space. For
example, considering the simple version of Player without the aName field, Even
Score could be an abstract state for a Player instance that groups the roughly 23!
states that represent a score that is an even number. Likewise, for an instance of the
Deck class, the abstract state Three Kings could represent any possible configuration
of the deck where exactly three cards with rank KING are present. These two exam-
ples illustrate that, because abstract states are arbitrary partitions of the state space,
they can really be defined as anything, no matter how whimsical. However, neither
of these two example abstract states would be particularly useful to design a realistic
software system. In practice, the software design task of state space partitioning is
to define abstract states that correspond to characteristics that will help construct a
clean solution. A more useful abstract state for P1ayer would be Non-zero Score,
and one for peck would be Empty (no cards in the deck), which in the latter case
happens to correspond to a single concrete state. When the distinction is necessary,
I use the term meaningful abstract state to indicate abstract states that capture states
that impact how an object would be used. For example, the abstract state Empty is
meaningful because it is not possible to draw a card from an empty deck. In con-
trast, the abstract state Three Kings is not meaningful because, at least in a game
of Solitaire, whether a deck contains three kings or not has no impact on the game
play and is not related to any design or implementation decision. Unless otherwise
noted, future references to the term abstract state assume that we are talking about
meaningful abstract states.

A special case when thinking about object state is that some objects do not store
any values. For example, function objects (see Section 3.4), often do not have any
fields besides constants. In this case, we talk about stateless objects. When the con-
trast is important, we can refer to objects that have state as stateful objects. Another
property of objects that is related to their state is mutability (see Section 2.6). This
chapter is concerned with objects that are both mutable and stateful. In the case of
immutable objects, the boundary between statefulness and statelessness becomes
blurry, because in practice they only have a single state.

4.3 State Diagrams

As the result of method calls, a stateful and mutable object may transition between
different abstract states. The sequence of abstract states that an object transitions
through can be referred to as its life cycle, because it describes the “life” of an

! Computed as ):120 (5253!,()!.
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object, from its initialization to its abandonment and eventual destruction by the
garbage collector. As a simple example, we can consider an instance of a class Deck
that represents a deck of playing cards. Let us assume that instances of the class are
initially empty and that a method shuffle () initializes the instance with 52 cards
in random order. In this case, the method call will induce a transition between an
abstract state Empty and an abstract state Complete that represents a full deck. Fol-
lowing an uninterrupted sequence of 52 calls to a method draw () , which removes a
card from the deck, the instance will return to the Empty abstract state.

UML state diagrams® are useful to represent how objects can, during their life-
time, transition from one abstract state to another as a reaction to external events
(typically, method calls). They represent a dynamic view of a software system. The
annotated diagram in Figure 4.1 shows all the state diagram notation used in the
book.

Trigger and Guard:

What triggers the

transition when Action: What )
the guard is true. happens with the Final

Initial

transition x State
State State \ A)

trigger [guard] |
actlon Y~
Self

Abstract State A .
Transition

Abstract State B

Transition

Fig. 4.1 Selected notation for state diagrams

The example in Figure 4.2 illustrates both the notation and purpose of UML state
diagrams. It models some of the important abstract states of an instance of a class
Deck as discussed above. Even this simple diagram captures key information about
the design of the Deck class.

The object behavior modeled by the state diagram starts at the initial state. The
initial state transitions into the Empty abstract state, which allows us to infer that the
constructor returns a reference to a new Deck object with no cards in it. In UML,
the initial and final states are special states that indicate the start and end of the state
machine, respectively.? Unlike regular states in the diagram, they do not represent a
partition of the abstract state space. In our case, the transition out of the initial state
corresponds to a call to the constructor of the class. The transitions are annotated
with names that correspond to methods of the class Deck.

In a state diagram, absence of a transition usually means that the absent transition
is not possible (i.e., invalid) for that state. In particular, a transition can only occur

2 The official name of the diagram is UML state machine diagram. In this book I use the simpler
form state diagram.

3 Technically the initial state is called a pseudostate, but this distinction is not important here.
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shuffle

Complete

draw

draw [size>1]
draw [size=1]

Incomplete

Fig. 4.2 State diagram for an instance of Deck

if all applicable preconditions are respected (see Section 2.9). Here we can see that
we cannot draw cards from an empty deck, which happens to correspond to the
existence of a precondition that the desk must not be empty for client code to call
method draw (). Thus, the only legal transition out of the Empty state is shuffle
which brings the object to the Complete state. From this it can be inferred that
Complete is a shorthand for Complete and shuffled (in this particular design).

The shuffle transition out of the Complete state illustrates the idea of self tran-
sitions, namely, events that do not result in a change of abstract state. The only
transition out of the Complete state is draw, which brings the deck object to an
Incomplete state.

It is also possible to attach to a transition an action that describes what happens as
the result of the transition. The action that corresponds to the draw event is remove
card from the deck. The action information is optional and here I chose to leave it out
of the diagram because it seemed redundant with the name of the event (considering
that to draw is a synonym of fo remove in the context of card games).

The two transitions out of the Incomplete state illustrate the importance of
guards, because here without the concept of a guard we would not be able to model
the distinction between a draw event that leads to the Empty state, and a draw event
that keeps the object in the Incomplete state. The language I use for modeling guards
does not follow a formal specification, but I nevertheless like to specify guards using
pseudo-code that is very close to what could be reasonably tested on an instance of
the object. Here the guard would assume the presence of a size () method in the
Deck class.

Finally, the diagram in Figure 4.2 does not include any final state. While the
meaning of the initial state is the context in which an object is initialized, the mean-
ing of the final state is open to interpretation. One possible use of the final state is
to indicate the state in which an object is expected to be at the end of its lifetime. In
many designs, objects can end their life (stop being used) in any state. In this latter
case, the final state model element can be omitted.

When getting started with modeling object states with state diagrams, one ten-
dency is to use the state diagram notation to model a type of data flow information,
where states represent processing, and arrows represent the flow of data between
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processing stages. This is an incorrect use of the notation.* A tip to avoid this pit-
fall is to think about the names of the states. If the names assigned to states include
verbs or feel like they are describing actions (for example, draw card), it can be a
sign that the diagram does not represent a good model of the state space.

State diagrams help us think about the state space for objects of a given class
systematically. When modeling the state of an object, a good practice is to visit
each state and consider each possible type of transition. This procedure helps avoid
overlooking certain paths through the code (e.g., shuffling an incomplete deck). One
additional benefit of explicitly modeling object state is that it allows us to evaluate
the impact of design decisions on the complexity of the abstract state space that
must be considered when writing client code. For instance, in the example above,
the state space is simple (three states) because of the decision to combine the deck
initialization code with the shuffling code. Separating this behavior into distinct
initialize and shuffle methods, or including a sort method, leads to a more
complicated abstract state space for the object (see Figure 4.3 for an example).

init shuffle

Initialized

draw [size > 1]

Incomplete (shuffled)

draw [size==1]
shuffle

draw [size==1] [size > 1]

Incomplete (ordered)

Fig. 4.3 State diagram for an instance of beck where initialization and shuffling are separate op-
erations

Objects with a complex life cycle are difficult to use, difficult to test (see Chap-
ter 5), and their design and implementation is error-prone. A good design principle
to avoid objects with complex life cycles is thus to minimize the state space of
objects to what is absolutely necessary for the object to provide the required func-
tionality. In practice, this means designing the class so that it is not possible to put

4 For which a better match is an activity diagram, which is, however, not covered in this book.
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the object in an unnecessary state. An example of an unnecessary state is state Ini-
tialized in Figure 4.3, because there is no use for an unshuffled deck of cards. In
some cases, eliminating some states from the life cycle of an object may seem like
reducing the versatility of a class (what if we need this one day?). However, this kind
of SPECULATIVE GENERALITYT is often not worth the cost. A related advice when de-
signing classes is to avoid including any “accessory” field that does not capture the
essential state of an object of the class. Examples of accessory fields include TEmpo-
RARY FIELDst (used only under limited conditions such as during initialization) and
convenience fields that duplicate a value that can be obtained indirectly via another
field. Such unnecessary fields make it more difficult to reason about the state space
of objects of the class.

Code Exploration: JetUML - RecentFilesQueue
Abstract states that matter

Class RecentFilesQueue is a bounded list used to keep track of files recently
opened by the application, with a maximum capacity (set at five files). Despite
the fact that the class defines only one state-changing method (add), the life-
cycle of objects of this class is rich with interesting cases. There are three
meaningful abstract states that govern how the methods of the object behave:
Empty, Partially Filled, and Full. In the Empty state, the query (i.e., non-state-
changing) method getMostRecentDirectory returns a special value. In the
Filled state, method add has an additional side-effect, namely to remove the
last element in the list. Finally, through method deserialize, it is possible
to transition from the initial state to any of the three abstract states mentioned
above.

4.4 Nullability

One aspect of most programming languages that gets in the way of designing ef-
fective state spaces and life cycles for objects is the possibility to assign the value
null to a variable of a reference type. In Java (and similar languages, such as C++),
null is a special value that indicates, in a troublesome way, the absence of value.
For example, if we assign null to a variable:

Card card = null;

we are in effect stating that the variable card is of a reference type card, but that
it refers to... nothing! This is problematic because variables of reference types are
intended to be dereferenced. For example:

System.out.println(card.rank());

Because, with a reference to nothing, there is nothing to dereference, the result
is the dreaded NullPointerException, the symptom of innumerable bugs in Java
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software. Generally speaking, relying on the null reference can cause a lot of harm.
In fact, the inventor of the null reference, Tony Hoare, is reported to have stated
his regret at implementing this feature (see Further Reading). In terms of low-level
design, null references are a problem because of how difficult it is to think about all
possible program paths that may lead to a null dereference. Null references are also
a liability for software design because of their inherent ambiguity. Depending on the
situation, a null reference in the state of an object could be interpreted to mean:

1. That a variable is temporarily un-initialized, but is expected to become initialized
in a different abstract state for the object. For example, in class Deck, we could
assign to the field acards the value nu11 until the deck is shuffled;

2. That a variable is incorrectly initialized because the programmer overlooked a
path through the code where the variable had to be initialized;

3. That the value is a flag that purposefully represents the absence of a useful value
in the normal life cycle of an object;

To avoid unnecessarily enlarging and complicating the state space of an object with
dangerous null references, a recommended practice is to design classes so that null
references are simply not used. How to realize this goal in practice depends on
whether there is a need to model the absence of a value for a variable or not. The
Solitaire application is an example of a code base that does not use the null refer-
ence.

No Need to Model Absent Values

If it is possible to design a class to avoid any abstract state where a certain variable
does not have a value, it is greatly desirable to design the class to prevent this even-
tuality. For example, normal playing cards must have a rank and a suit, so there is
no reason to allow null references for either instance variable.

public class Card {
private Rank aRank; // Should not be null
private Suit aSuit; // Should not be null

public Card(Rank pRank, Suit pSuit) {
aRank = pRank;
aSuit = pSuit;

We can ensure that variables are not assigned a null reference by using either
one of two approaches: input validation (Section 2.8), or design by contract (Sec-
tion 2.9). With input validation, everywhere a variable can be assigned, we check
whether the input value is a null reference and throw an exception if that is the case:
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public Card(Rank pRank, Suit pSuit) {
if (pRank == null || pSuit == null) {
throw new IllegalArgumentException();

aRank = pRank;
asSuit pSuit;

With design by contract, we stipulate, using a precondition, that null is not a
valid value for a variable and, optionally, check that the precondition is respected
with an assert statement:

/x*
* @pre pRank != null && pSuit != null;
*/

public Card(Rank pRank, Suit pSuit) {
assert pRank != null && pSuit != null;
aRank pRank;

aSuit = pSuit;
}

In either case, if the card constructor is the only place where aRank and asuit can
be assigned, we have effectively ensured that the value stored in either variable will
not be a null reference.

Modeling Absent Values

In many situations, the domain concept we are trying to model will require that we
make a provision for the fact that there may not be a value. As an example, let us
consider a variant of class card where an instance can also represent a joker. In
many card games, a joker is a special card that has no rank and no suit. To identify
a card as a joker, a simple approach is to add a aIsJoker field to its declaration:

public class Card {
private Rank aRank;
private Suit aSuit;
private boolean alsJoker;

public boolean isdJoker () {

return alsJoker;

public Rank rank() {
return aRank;

public Suit suit () {
return aSuit;
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Here the logic to determine whether a card represents a joker is simple enough, but
what should we do with its rank and suit? As usual, different options are possible.
We can review three:

* Null references: We could just ignore the advice offered in this section and assign
null to aRank and asuit. This means it would be possible to call (for example)
card.rank () .ordinal () on a joker, and get a NullPointerException.

» Arbitrary values: We could assign an arbitrary, meaningless value for the rank
and suit of a joker (e.g., Ace of Clubs). However, this is both confusing and
dangerous. A part of the code could erroneously request the rank of a joker, and
receive the value ACE, which makes no sense. It is easy to imagine how tracking
down this bug could be lengthy and annoying.

» Special values of an enumerated type: We could add an INAPPLICABLE enumer-
ated value to both Rank and suit, and assign these values to the corresponding
fields for instances of card that represent jokers. This solution also has some
clear weaknesses. First, it is a conceptual abuse of the idea of enumerated types,
where each value is enumerated. Conceptually INAPPLICABLE is not a valid value
in the enumeration, but rather a flag that indicates that we do not have a value.
Second, although we have four suits and 13 ranks, this solution will yield five and
14 enumerated values for each type, respectively. This discrepancy will muck up
any code that relies on the ordinal values of these types (such as the initialization
of a deck of cards), and introduce opportunities for off-by-one errors.

Fortunately, there are better solutions for avoiding the use of null references to
represent absent values.

Optional Types

One solution is to use an optional type. In Java, optional types are supported by
the optional<T> library class. The optional class is a generic type that acts as a
wrapper for an instance of type T, which can be empty. To make a value of type T
optional for a variable, we declare this variable to be of type Optional<T>. In our
case:

public class Card ({
private Optional<Rank> aRank;
private Optional<Suit> aSuit;

}

To represent the absence of a value of the variable, we use the value returned by
Optional.empty (). S0, to create a constructor that instantiates a Card that repre-
sents a joker, we could have:
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public class Card {
private Optional<Rank> aRank;
private Optional<Suit> aSuit;

public Card() {
aRank = Optional.empty();
aSuit = Optional.empty();
}

public boolean isdJoker () {
return aRank.isEmpty () ;

}

To create an instance of Optional that represents an actual value, we call
Optional.of (value) if value is not (ever) expected to be null, and optional.-
ofNullable (value) if value can be null (in which case optional.empty () will
be stored instead). To get the value wrapped by an instance of optional, we call
get ().

Using Optional in this way, we can both shed the dangerous use of null refer-
ences and cleanly represent the absence of a value. The one main consequence, how-
ever, is that the two fields no longer have the types likely to be desired by the client
code. While the client will probably be interested in working with values of type
Rank and suit, the fields of the class now store values of type Optional<Rank>
and Optional<Suit>. To get around this issue, two main alternative are possible:

* Change the interface of class cardso that rank () and suit () return Optional-
<Rank> and Optional<Suit>, respectively. This requires client code to call
get () everywhere the actual instance is needed, which is cumbersome.

*  Unwrap the optional within rank () and suit (), which preserves the interface
but requires clients to ensure that they do not call the methods on a card that
represents a joker (something that could be specified using design by contract,
for example). This last solution is starting to look a lot like the use of null ref-
erences, but it is technically safer, because calling get () on an empty instance
of optional will raise an exception immediately when the value is misused, as
opposed to potentially propagating a null reference through the execution of the
code.

Code Exploration: JetUML - TypeNode

Using optional types.

Class TypeNode illustrates a classic scenario for using optional types. In Jet-
UML, type nodes represent class and interface diagram elements in a class
diagram. They can optionally be located in a package node. Correspondingly,
the class declares a field acontainer to store a reference to the package node
that contains the element. In this case, using an optional type as the type of the
container is a great fit because it supports a feature that is actually optional. If



78 4 Object State

the type node is not contained in any package node, aContainer.isEmpty ().
In this case, I implemented the access to the optional value using design by
contract, by specifying that the getter method getParent () can only be called
if the node has a parent (that is, a container).

The NULL OBJECT Design Pattern

There exists a second solution for avoiding the use of null references to represent
absent values, which avoids the issue of unpacking wrapper objects. This solution
uses a special object to represent the null value. For this reason, this idea is called
the NuLL OBIECT design pattern. Using a NULL OBJECT to represent a null value re-
lies on polymorphism, so it is only applicable to situations where a type hierarchy
is available. Because card objects are not a subtype of any other user-defined type,
we cannot use it to model a joker. To explore the NULL OBJECT pattern, let us con-
sider a different scenario, where a Cardsource in client code could be unavailable.
CardSource is an interface that defines methods draw () and isEmpty () and that it
is implemented by the Deck class (see Section 3.1).

The main idea of NULL OBJECT is to leverage polymorphism to create objects
to represent the null (or absent) value. The methods of the subtype representing
null objects can be called as usual, but their behavior is consistent with the absence
of a value. Figure 4.4 illustrates NuLL OBJECT applied to the context of handling
potentially absent card sources. If a card source is unavailable, instead of assigning
null to the corresponding variable, we create a new instance of NullCardSource
and assign a reference to that object instead.

CardSource source = new NullCardSource();
Y B4

if (!source.isEmpty()) {
Card card = source.draw();

«interface»

CardSource
NullCardSource [----| <E---- Deck

draw():Card
isEmpty():boolean

Fig. 4.4 The cardsource interface with support for the NuLL OBIECT pattern

Let us now turn to the implementation of the methods of Nullcardsource. The
implementation of isEmpty () is straightforward: an absent card source does not
have any cards, so we always return true:
public boolean isEmpty () {

return true;

}
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However, what should method draw () return for a NullCardSource? In this
case it is helpful to revisit the declaration of the interface. In its interface declaration,
method draw includes a precondition: !isEmpty (). However, because isEmpty ()
always returns true for instances of Nullcardsource, method draw () should never
be called. For this reason, it does not matter what it actually returns. To avoid re-
turning anything altogether, we can throw an exception:
public Card draw() {

assert !isEmpty();

throw new IllegalStateException();
}

Because types for null objects are usually simple, we can also declare them as a
constant in the corresponding interface using an anonymous class. The solution for
the cardsource design context is the following:

public interface CardSource {

CardSource NULL = new CardSource () {
public boolean isEmpty () {
return true;

}

public Card draw() {
assert !isEmpty();
throw new IllegalStateException();
}
bi

Card draw () ;
boolean isEmpty();

With this solution, there is no longer a need for a separate NullCardSource
class. Client code that must indicate an absent card source can simply use the ref-
erence available through cardSource.NULL instead. Because a NULL CardSource
behaves just like any other card source, many special cases are avoided. In our case,
for example, because all client code that works with a card source must check for
emptiness first, obtaining a NULL card source is indistinguishable from obtaining an
empty one.

The example described above shows an ideal application of NULL OBJECT, in the
sense that we can define an implementation for the null object such that the client
code does not need to check whether an object represents a null value or not. In cer-
tain situations, it can be necessary to test whether an object represents a null value or
not. In such contexts, we can add an isNull () method to the interface. The behavior
of this method is to return t rue for instances that represent null objects, and false
for all other instances. A common scenario where an isNull () method is useful is
when refactoring code to replace null values with a null object. In such a scenario,
null checks on a variable, such as if (value == null), can be directly replaced
with if (value.isNull ()). When no longer necessary, the isNull () method can
then be retired.
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Code Exploration: Solitaire - NullPlayingStrategy
Applying the NULL OBJECT pattern.

Class NullPlayingStrategy demonstrates two related applications of the
NULL OBJECT pattern. First, the class itself is a null object value that represents
the absence of a playing strategy. Injecting the GameModel class with this
type of strategy is a clean way to disable the auto-play feature without flags
or corner cases. Second, the class realizes the pattern by overriding method
getLegalMove to return a null object for the Move class hierarchy. The null
Move is declared in the initialization of GameModel.NULL_MOVE. Predictably,
a null move represents the absence of an action in the game.

4.5 Final Fields and Variables

In Section 4.3, I argued that one useful principle to follow when designing a class
is to keep the abstract state space for objects of the class to the minimum necessary
for the objects of the class to provide the services expected of them. For example,
a well-designed Deck class has three meaningful abstract states, not ten. Because
object state is just an abstraction of the combination of values taken by the fields of
an object, the way to realize the principle in practice is to limit the number of ways
in which the field values can be updated. We already saw, in the previous section,
how avoiding null references whenever possible can help us reach this goal. An even
stricter constraint for keeping the abstract state space of objects to a minimum is to
prevent changing the value of a field after initialization, so that the value of the field
remains constant throughout the life of the object.

This constraint can be made explicit through the use of the final keyword placed
in front of a variable declaration (which includes the declaration of instance vari-
ables). If we declare the fields aRank and asuit to be final in class card:
public class Card {

private final Rank aRank;
private final Suit aSuit;

public Card(Rank pRank, Suit pSuit) {
aRank = pRank;
aSuit = pSuit;

}

then the fields can be assigned a value only once, either in the initializer part of
their declaration, or directly in the constructor (as in the example).> Attempting to
reassign the value of the field anywhere else in the code leads to a compilation error.

5 In practice, the field initialization code (the right-hand side of the equal sign in a field declaration)
gets executed as part of the constructor call anyways.
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The £inal keyword thus helps to limit the state space of an object, because any field
marked as final can only take a single value. In the case of class card, making both
aRank and asuit final renders objects of the class immutable, because the objects
themselves are immutable and there are no other fields.

An important thing to keep in mind with the use of the final keyword is that,
for reference types, the value stored in a variable is a reference to an object. So,
although it is not possible to reassign a final field, it is certainly possible to change
the state of the object referenced (if the object is mutable). Let us illustrate this point
by making field acards of class Deck final:

public class Deck {
private final List<Card> aCards = new ArraylList<>();

}

A fresh instance of class Deck is shown in Figure 4.5.

:Deck cardList:ArrayList<Card>
aCards = —/ elementData = value

Fig. 4.5 Instance of class beck

Because field acards is final (something not visible on the diagram), we can be
sure that the reference held in the field will always refer to the one ArrayList
named cardList on the diagram. In other words, it will not be possible for this
arrow to point anywhere else. However, we can (and need to) change the state of
cardList, for example to initialize it with all the cards. Thus, although final fields
can be very helpful in restricting the state space of an object to make it easier to
understand the behavior of the object at run time, they do not make the referenced
objects immutable.

The discussion above was concerned mainly with instance variables. However,
local variables (including method parameters) can also be declared to be final. As
opposed to fields, however, the case for making local variables final is much less
clear because they are not long-lived.® There is one fairly technical special case
where local variables must not be reassigned (see Section 4.9), but even then the
variable does not need to be explicitly marked with the final keyword.” T occa-
sionally declare a variable final to make my intent clear that the variable is not and
should not be reassigned. This is only really useful for long and/or complex meth-
ods that may be a bit difficult to understand. Ideally, this should be a rare scenario,
because well-designed methods are short and simple (and an overly LONG METHOD{
is a recognized antipattern).

6 Local variables only exist for the duration of the execution of code in their scope.

7 Since Java 8, local variables that are not reassigned are considered effectively final by the com-
piler.
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4.6 Object Identity, Equality, and Uniqueness

Three important concepts to keep in mind when designing object life cycles are
those of identity, equality, and uniqueness.

Identity refers to the fact that we are referring to a particular object, even if this
object is not in a variable. In terms of programming environments, the identity of
an object could refer to its “memory location”, or “reference/pointer to”. However,
in modern programming systems the memory management of objects is heavily
abstracted, and for this reason it is best to think in terms of object identity. Most
integrated development environments supply a convenient handle to represent an
object’s identity. For example, in the Eclipse debugger this is represented by the
object id.

Cardjava X T O (0= Variables X ©g Breakpoints = 0
= = o
public static void main(String[] args) ~ BB 8
A { Name Value
E::g z::j; = ::: Ez:jgsz:tﬁgi’ 231:225:;; G+ <init>() returned (No explicit return value)
= . , . = . .
System.out.println(cardl == card2); & args String[0] (id=21)
} & cardl Card (id=49)
& card2 Card (id=50)

Fig. 4.6 Representation of object identity in the Eclipse debugger

In the small example of Figure 4.6 two card objects are created, and conse-
quently result in two distinct objects with two distinct identities, represented with
internal object identifiers 49 and 50 (on the right, in the Value column). In the object
diagram of Figure 4.7, the main method is represented as an object with two fields
in place of local variables. The diagram shows how object identity corresponds to
both object model elements and the references to these objects. If, for instance, a
reference to the card object with id 49 is added to a list, there will be two locations
that refer to a single shared identity.

The last statement in the main method in Figure 4.6, is a reminder that in Java,
the == operator returns true if the two operands evaluate to the same value. In
the case of values of reference types, the same value means referring to the same
object (identity). So here the statement returns false because, although both cards
represent an Ace of Clubs, they are references to different objects.

The situation above, where two different card objects represent the Ace of Clubs,
illustrates the concept of object equality. In the general case, equality between two
objects must be programmer-defined because the meaning of equality cannot always
be inferred from the design of the object’s class. In very simple cases (like objects
of class card), one could say that two objects are equal if all their fields have the
same value. However, for objects of more complex classes, this could be too strict.
For example, if some objects cache values or have non-deterministic or unspecified
internal representations, they could be “equal” in the practical sense, without having
precisely the same value for each field, transitively. For example, two instances of
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:Card

main: :Card

card1 =

card2 =

Fig. 4.7 Object identity example

a set abstract data type (such as Java’s set) must be equal if they have the same
elements, even if internally the order in which these elements are stored is different.

For this reason, Java provides a mechanism to allow programmers to specify
what it means for two objects of a class to be equal. This specification is realized
by overriding the equals (Object) method of the object class. The default imple-
mentation of the equals method defines equality as identity. In other words, if the
equals method is not redefined for a class, a.equals (b) is practically the same as
a == b.3 In many situations, like our example of playing cards, this is not what we
need, and we must supply our own implementation of the equals method. Imple-
mentations of equals can usually follow this example as a template:

public boolean equals (Object pObject) {
if (pObject == null) {
return false; // As required by the specification
}
else if (pObject == this) {
return true; // Standard optimization
}
else if (pObject.getClass() != getClass()) {
return false;

}

else {
// Actual comparison code
return aRank == ((Card)pObject) .aRank &&
((Card)pObject) .aSuit == aSuit;

I will revisit some of the details of the overriding mechanism in Chapter 7. For
now, it suffices to say that if the equals method is redefined in a class, calling

8 Except in the case where a —— null. The == operator will correctly compare null values, but if
aisnull, a.equals (b) will raise a NullPointerException.
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equals on an object of this class will result in the redefined version being executed,
and thus implement the custom definition of equality. In our case,

cardl.equals (card2)

will return t rue.
A crucial constraint when overriding equals is that any class that overrides
equals must also override hashCode so that the following requirement is respected:

If two objects are equal according to the equals (Object) method, then calling the
hashCode method on each of the two objects must produce the same integer result.
—Reference documentation for Ob ject #equals

This constraint is necessary because, among other things, many classes of the
Java class library’s Collections framework rely on a combination of equality testing
and an object’s hash code for indexing objects in internal data structures.

A final consideration related to identity and equality is the concept of unigue-
ness. In our example code, we could rightfully wonder what is the point of tolerating
duplicate objects that represent exactly the same card (e.g., Ace of Clubs). A some-
times useful property for the objects of a class is uniqueness. Objects of a class are
unique if it is not possible for two distinct objects to be equal. If the objects of a class
can be guaranteed to be unique, then we no longer need to define equality, because
in this specific case, equality become equivalent to identity and we can compare ob-
jects using the == operator. Strict guarantees of uniqueness are almost impossible to
achieve in Java due to mechanisms such as metaprogramming (see Section 5.4) and
serialization.” However, in practice, the use of a design pattern, presented below,
and the conscious avoidance of metaprogramming and serialization, provide a good
enough guarantee of uniqueness that can help simplify some designs.

Code Exploration: JetUML - Dimension
Methods equals and hashCode for records.

Type Dimension, first explored in Section 2.3, provided an example of a
record type that yields objects that are not unique. Indeed, it is possible to
create two distinct objects that represent exactly the same dimension (width
and height). For this reason, we must rely on an implementation of the equals
and hashCode methods to identify equal dimensions and manage them in col-
lections. One benefit of record types is that an equals and hashCode method
is automatically generated for them based on the values of the fields. Although
there is no explicit declaration of these methods for Dimension, client code
can still call equals on an object of type Dimension. The method will return
true if both width and height are equal.

9 Serialization involves converting an object into a data structure that can be stored outside a
running program and reconstructed later. The reconstruction of a serialized object normally leads
to a copy of the serialized object being created.
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4.7 The FLYWEIGHT Design Pattern

The FLYWEIGHT pattern provides a way to manage collections of shared objects that
are usually simple and immutable. For example, card objects in the Solitaire appli-
cation are immutable and referenced in many different classes. Although sometimes
used to address performance concerns, FLYWEIGHT is also valuable to ensure that ob-
jects of a class are unique.

The idea that underlies the pattern’s solution template is to manage the creation
of objects of a certain class, called the flyweight class. Instances of the flyweight
class are called flyweight objects. The crucial aspect of the FLYWEIGHT is to control
the creation of flyweight objects through an access method that ensures that no du-
plicate objects (distinct but equal) ever exist. The three main components necessary
to realize this constraint are:

1. A private constructor for the flyweight class, so clients cannot control the cre-
ation of objects of the class;

2. A flyweight store that keeps a collection of flyweight objects;

3. An access method that returns the unique flyweight object that corresponds to
some identification key. The access method typically checks whether the re-
quested flyweight object already exists in the store, creates it if it does not already
exist, and returns the unique object.

For example, we could decide to make the card class a flyweight. Let us first
consider the non-flyweight version:

public class Card {
private final Rank aRank;
private final Suit aSuit;

public Card(Rank pRank, Suit pSuit ) {
aRank = pRank;
aSuit = pSuit;

}

/# Includes equals and hashCode implementations #*/

}

Instances of this class are clearly not unique, given that it is possible to use the
constructor to create two instances that are distinct but equal:

Card cardl = new Card(Rank.ACE, Suit.CLUBS);

Card card2 = new Card(Rank.ACE, Suit.CLUBS);

System.out.println (String.format ("Same?: %b; Equal?: %b",
cardl == card2, cardl.equals(card2)));

To implement Step 1 of the solution template, we simply change public for
private in front of the constructor. This prevents client code from creating new
Card instances arbitrarily. Now we need to figure out a way for code outside of
class card to get instances of the class. Before tackling this question (Step 3 in the
solution template), let us create a store for flyweight card instances (Step 2 in the
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solution template). The two main decisions to make to realize this step are choosing
a data structure to hold the instances, and deciding where to locate this structure in
the code.

It is important to note that with design patterns, each application of the pattern
can involve different implementation details. A solution template is just that: an
overview of the main structures. For the FLYWEIGHT in particular, the implementation
of the flyweight store and access method can exhibit much variability, depending on
the details of the flyweight class.

In our case, because playing cards can be indexed in terms of two keys (rank and
suit), I will store them in a two-dimensional array. As to where this array should be
located, one option is to hold it as a static field in class card so that we can make
it private and use methods of class card to access it. The following code shows the
definition of the flyweight store and an implementation of its initialization.

public class Card ({
private static final Card[][] CARDS =
new Card[Suit.values() .length] [Rank.values () .length];

static {
for (Suit suit : Suit.values()) {
for (Rank rank : Rank.values()) {
CARDS [suit.ordinal ()] [rank.ordinal ()] =
new Card(rank, suit);

Because objects that represent playing cards are relatively small in number (52)
and completely known in advance, I also chose to pre-initialize the flyweight store
with a static initializer block.'® This implementation is only one example of a FLy-
WEIGHT implementation. Even for the same context (playing cards), many other al-
ternatives are possible. For example, it would be possible to store flyweights in lists
or hash tables.!! With the current solution, accessing the collection with a correct
index is guaranteed to produce the requested card. For example:

CARDS [Suit.CLUBS.ordinal () ] [Rank.ACE.ordinal () ];

will return the (assumed unique) instance of card that represents the Ace of Clubs.

The code above is only correct if it is placed within the scope of class card,
because CARDs is private. To grant access to cards to code outside the class, we need
an access method. In our example, the implementation of this method is trivial:

public static Card get (Rank pRank, Suit pSuit) {
assert pRank != null && pSuit != null;
return CARDS[pSuit.ordinal ()] [pRank.ordinal()];
}

10° A block of code that executes once, when the class is first loaded into the run-time environment.

1 The best choice is probably to use the EnumMap library type, but to get the point across with a
minimum of explanation, the array-based solution is more accessible.
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This method is static given that the flyweight store is static. The combination of the
flyweight store and corresponding access method is sometimes referred to as the
flyweight factory. In this context, I used static structures in the flyweight class as
the flyweight factory. However, it is not the only option, as we could also create a
separate class to fulfill this role (called, for example, CardFactory).

For flyweight objects that represent playing cards, the use of the pair (rank, suit)
as the identification key is intuitive. In other scenarios, it can be less obvious what
the identification key should be. For example, for an object of type Person, the key
could be a name, an identification number, etc. In any case, the identification cannot
be an instance of the flyweight object itself. In our example with cards, such an
approach would look like:

Card card = Card.get (someCard); // INVALID

This would mean that to obtain a flyweight object of class card, it would be
necessary to already have that object. Because the only way to get a flyweight object
should be through its access method, this scheme leads to an infinite cycle.

An important concern when implementing the FLYWEIGHT pattern is whether to
pre-initialize the flyweight store, or whether to do this lazily, by creating objects as
they are requested through the access method. The answer is context-dependent. In
general, in cases where there exists a small and finite set of flyweights, it may make
sense to pre-initialize them (as in the example). In other cases, additional logic must
be added to the access method to check whether the object exists in the collection
and, if not, create it based on the key. In this latter case, the access method needs
to be able to access all the information it needs to create the flyweight instance that
corresponds to the requested key. The following code shows the FLYWEIGHT-relevant
portion of a version of the card class where instances are lazily created:

public class Card {
private static final Card[][] CARDS =
new Card[Suit.values () .length] [Rank.values () .length];

public static Card get (Rank pRank, Suit pSuit) {
if (CARDS [pSuit.ordinal ()] [pRank.ordinal ()] == null) {
CARDS [pSuit.ordinal () ] [pRank.ordinal ()] =
new Card(pRank, pSuit);
}
return CARDS[pSuit.ordinal ()] [pRank.ordinal()];
}

Finally, the FLYWEIGHT pattern is especially convenient when used to manage
immutable flyweight objects. Although it is technically feasible to apply the pattern
to manage a collection of mutable objects, this approach can easily become error-
prone. In any case, it is crucial to ensure that the portion of the flyweight objects’
state that defines the objects’ identity cannot be mutated.
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Code Exploration: JetUML - Direction
Application of FLYWEIGHT with multiple access methods.

Class Direction represents a certain direction, in degrees, in a geometric
plane. By design, degrees are represented as integers, with a maximum pre-
cision of one degree. This decision means that there can be at most 360 dis-
tinct directions to represent. I used the FLYWEIGHT to prevent a proliferation
of Dimension objects, with numerous duplicates for the common values that
represent the cardinal directions (north, south, etc.). One interesting aspect of
this application of the pattern is that the flyweight factory provides multiple
access methods. For example, fromangle returns a dimension given an input
angle, whereas fromLine finds the direction using a line in the plane as input,
and mirrored finds the direction that is opposite to the input direction.

4.8 The SINGLETON Design Pattern

The SINGLETON design pattern provides a way to ensure that there is only one in-
stance of a given class at any point in the execution of the code. The context for
this design pattern is the need to manage an instance that holds, in one place, a co-
hesive amount of information that different parts of the code need. An example of
a potential SINGLETON object in a card game would be the instance that represents
the aggregated state of the game. This state could include the deck of cards and the
various piles of cards in the game in progress. The solution template for SINGLETON
involves three elements:

1. A private constructor for the singleton class, so clients cannot create multiple
objects;

2. A global variable for holding a reference to the single instance of the singleton
object.

3. An accessor method, usually called instance (), that returns the singleton in-
stance. The accessor method is optional, because it is also possible to implement
the pattern by declaring the global instance to be a public constant.

In a sample card game, a singleton object that encapsulates the aggregated state
of the game, of class GameMode1, could be implemented as follows:
public class GameModel {

private static final GameModel INSTANCE = new GameModel ();

private GameModel () { /% ... %/}

public static GameModel instance () {
return INSTANCE;
}
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The SINGLETON pattern differs from FLYWEIGHT in that it attempts to guarantee
that there is a single instance of a class, as opposed to unique instances of a class.
Singleton objects are typically stateful and mutable, whereas flyweight objects are
preferably immutable.

A typical mistake when implementing the SINGLETON pattern is to store a refer-
ence to an instance of the class in a static field called INSTANCE or something like it,
without taking proper care to prevent client code from independently creating new
objects. In this case, use of the Singlefon name is harmfully misleading, because
users of the code may rely on the fact that the class yields a single instance when in
fact it does not.

The classic way to prevent instantiation is to make the class constructor private.
However, in Effective Java [2], Bloch proposes a controversial trick, namely, to use
an enumerated type (Item 3: Enforce the singleton property with a private construc-
tor or an enum type). For example, to make a GameModel class a singleton, one
could do:

public enum GameModel ({
INSTANCE;

public void initializeGame () {}

This technically works because the compiler will prevent the instantiation of enu-
merated types. Although this approach is presented as preferred in Effective Java,
it is not without detractors. To me, this strategy uses a programming mechanism
(enumerated types) for an intent other than originally designed and, as such, it can
be confusing. Here the type GameModel is not a finite set of values representing
different game models, which is what one would initially expect when seeing an
enum designation. I thus recommend sticking to a private constructor to ensure the
single-instance constraint.

Now that we know about the SINGLETON, I must mention that this pattern is con-
troversial. While all design decisions involve trade-offs (see Section 1.1), in the case
of the SINGLETON, the balance can often tip in favor of the disadvantages. First, a sin-
gleton is essentially a global instance, accessible from anywhere in the code. It is
thus easy to make unprincipled use of this object, leading to numerous dependen-
cies and code that is hard to understand. Second, singleton objects are difficult to
test because they control their own life cycle and live for the entire duration of the
application. Chapter 5 discusses testing in detail but, for now, it suffices to say that
use of the SINGLETON makes a stateful object difficult to replace when necessary.
In many cases, a good alternative for accessing a reference to a unique object is
to use dependency injection (see Section 3.8). However, dependency injection does
not provide a mechanism for preventing the creation of multiple instantiations of a
class. This constraint must be respected with the assistance of methodical program-
ming and documentation. What dependency injection helps achieve, however, is to
propagate that single instance to the code that requires it.

Generally, what is important is to be able to recognize situations where only one
instance of a class must be present in an application, and to be able to evaluate
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different strategies for creating and managing this unique instance. In cases where
dependency injection or another solution is fit for purpose, it may be preferable to
employ it instead of using a SINGLETON. In some cases, however, the SINGLETON may
turn out to be the preferable solution.

Code Exploration: Solitaire - GameModel
Managing a single instance without the SINGLETON.

In version 1.0 of Solitaire, I had implemented class GameMode1 as a singleton.
Similar to the running example in this section, GameModel is the class used to
create a single object that holds the complete state of the game. As the pattern
dictates, the object was available as a global instance to any other part of the
code. Later, I refactored GameModel to remove the part of the pattern that
controls the life cycle of the object. The class is still meant to be instantiated
only once, but in versions 1.2 and later, the life cycle is handled differently, to
illustrate an alternative to SINGLETON. Specifically, GameMode1 is instantiated
once when the application starts (in method Solitaire#start), and then
injected into the objects that need a reference to it.

Code Exploration: JetUML - ApplicationResources
Using the SINGLETON for pervasive access to a service.

Class applicationResources in JetUML provides a way to obtain the
various text strings that appear in the application (for example, button
and menu labels). Following the practice of string externalization, these
strings are not hard-coded, but stored in a separate configuration file. The
class provides an example of the SINGLETON, but with a quirk: there is
no instance () method. Instead, the field storing the singleton instance
is called RESOURCES and is public. In this case, I compromised on the
strict implementation of SINGLETON, mostly for cosmetic reasons. The sin-
gleton instance is referred to in over 100 locations in the code. Instead
of the cumbersome ApplicationResources.instance () reference, I re-
lied on Java’s static import mechanism to import the name of the in-
stance field. Because it would not be very meaningful to refer to just
INSTANCE, however, I named the field REsOURCEs. This way, the sin-
gleton instance of class ApplicationResources can be referred to any-
where in the code with the name RESOURCES (assuming the mention
import static ...ApplicationResources.RESOURCES; iS present). The
fact that ApplicationResources is required in a very high number of lo-
cations is also a factor that justifies using SINGLETON instead of dependency
injection.
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4.9 Objects of Inner Classes

Inner classes are a special category of classes that are declared within the scope of
an enclosing class and whose objects can discretely maintain a reference to other
objects. This feature can affect their state space. Anonymous classes, introduced in
Section 3.4, are a subcategory of inner classes.!?

Inner Classes

Inner classes are used to provide additional behavior that involves an instance of the
enclosing class, but which we do not want to integrate into the enclosing class. As
an example, let us say we want the option to record how many times a certain Deck
instance was shuffled. As usual, there are different ways of doing this. To illustrate
how inner classes work, we define a shuffler class as an inner class of beck:

public class Deck {
public void shuffle() { /# ... */}

public class Shuffler {
private int aShuffles = 0;

public Shuffler() {}

public void shuffle() {
aShuffles++;
Deck.this.shuffle();
}

public int shuffles() {
return aShuffles;

}

In this example, the first part of the declaration of class shuffler looks normal:
we declare a class shuffler with a field ashuffles and a method shuffle ().
However, things get interesting within the code of shuffler#shuffle (), where
we observe the statement Deck.this.shuffle () ;. Instances of an inner class au-
tomatically get a reference to the corresponding instance of their enclosing class
(called the outer instance). The outer instance for an inner class is explicitly as-
signed to the inner instance when the inner instance is created. This can be confusing
at first, so let us run through an execution:

Deck deck = new Deck();

Shuffler shuffler = deck.new Shuffler();
shuffler.shuffle();

12 Java also supports static nested classes. Static nested classes are declared like inner classes,
but with the static keyword placed before the class name. The main difference between static
nested classes and inner classes is that static nested classes are not linked to an outer instance.
Their purpose includes supporting encapsulation and code organization.
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The first line creates a new instance of Deck, as usual. The second line calls the
constructor of shuffler. However, because shuffler is an inner class of Deck, its
instances must be associated with an instance of Deck. We specify this association
by prefixing the constructor call with the name of a variable of type peck, followed
by a period. Within an inner class, the outer instance can be accessed through a
qualified name that consists of the name of the class of the outer instance, followed
by this. So, in our case, Deck.this refers to the outer instance of shuffler. On
the third line, it is the method shuffle () of the shuffler instance that is called,
but when this method executes, it then calls the shuffle () method of class Deck
on the deck instance using Deck.this. Figure 4.8 illustrates the scenario with an
object diagram.

main:
outer:Deck

deck = —

shuffler = —

\ inner:Shuffler

Deck.this = —

Fig. 4.8 Object graph for an inner class

With this design, the deck can be shuffled through the shuffler instance, which
will record how many times the method was invoked. It is also possible to shuf-
fle the deck without going through the shuffler instance, in which case the field
ashuffles will not be incremented.

An important consequence of the inclusion of a reference to an outer instance
is that the concrete state space of objects of inner classes adds to that of the outer
instance. Although this can technically lead to increased complexity, it does not
have to be so. With good design, the abstract state space of objects of inner classes
can remain independent of the state of the outer instance. This is the case for the
shuffler class, for which the state of the outer Deck instance does not influence
how we use the shuffler instance.

Anonymous Classes and Variable Capture
Anonymous classes are a subcategory of inner classes. In consequence, they also

have implicit access to additional state information through a reference to their outer
instance.'® Let us consider the following code for a factory method that creates a

13 Java also supports local classes, which are named but declared within a code block such as
a method declaration. Because local classes are rarely used, this section focuses on anonymous
classes. However, local classes work in a similar way.
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Comparator<Deck> instance that compares two decks in terms of the number of
cards of a given rank that they have.

public class Deck {
public static Comparator<Deck> createRankComparator (Rank pRank) {

return new Comparator<Deck> () {
public int compare (Deck pDeckl, Deck pDeck2) {
return countCards (pDeckl) - countCards (pDeck2);

}

private int countCards (Deck pDeck) {
/% returns the number of cards in pDeck with pRank */
}
}i

}

For example, in the code below, to see whether deckl contains more kings than
deck2, we could do:

Comparator<Deck> comp = Deck.createRankComparator (Rank.KING);
int result = comp.compare (deckl, deck2);

This solution is an example of a factory method used to create a function object
of type Comparator, as explained in Section 3.4. The code is relatively unexciting,
except perhaps for one intriguing observation. Upon closer inspection, it appears
that the code of method compare declared inside the anonymous class has access to
the parameter pRank of createRankComparator, which is a separate method in a
separate class. What could prank possibly refer to when the code is running? Once
the createRankComparator method returns an object, this object has its own life
cycle that is independent from that of the Deck object. Yet this is legal, compilable
code, that actually works and does what we want.

Because referring to variables in the parent method from an anonymous class is
such a useful programming idiom, it is supported by the language. To make this
work, when the compiler creates the definition of the anonymous class, it also (in-
visibly) adds fields to the anonymous class, and copies references to each of the
local variables referenced in the code of the anonymous class’s method into a field.
Thus, once an object of the anonymous class is created, the references to the local
variables are now stored in fields of the same name in the anonymous class. The
object diagram of Figure 4.9 illustrates the outcome.

In this diagram, the factory method is represented as a separate object with field
pRank used to represent its parameter. This method returns a new object of an anony-
mous class. So that the compare method can still refer to the prank parameter, a
field prank is created in the instance of the anonymous comparator, and the value
of prank is copied to it. A method definition together with references to its local en-
vironment variables is sometimes called a closure.'* As the object diagram shows, it

14 In Java, anonymous classes and lambda expressions are not closures in the strict sense because
they cannot modify the variables they reference. However, because they are as close as we can
get to closures in Java, I employ the term to refer to methods that capture some of the values in
non-local variables, as in this case.
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Deck.createByHandComparator:

pRank = —

KING:Rank

:Comparator<Deck>

pRank = —

Fig. 4.9 Example of closure at run time

should be clear that closures can lead to shared references between object instances.
To prevent unexpected behavior, Java prevents referencing external variables that
are reassigned within anonymous classes. !’

Code Exploration: Solitaire - GameModel
Instances of anonymous classes used as closures.

In class GameModel, field aDiscardMove represents a specific type of move
in the game, to discard a card from the deck. How this works with the rest of
the code is the topic of a later chapter. However, the initialization of the field
provides an example of how instances of anonymous classes retain a reference
to their parent class. By instantiating an anonymous subtype of interface Move,
the initialization of the field has to provide an implementation for the three
methods of the interface. Part of the explanation is to be found in the code of
method perform, which actually performs the discard move. In the code, we
see references to three fields: aDiscard, aDeck, and aMoves. These are not
fields of the anonymous class, but fields of its enclosing class, GameModel.

Insights

This chapter defined object state, argued that keeping track of all the different ab-
stract states an object can go through can be difficult, and proposed a number of
techniques for designing classes whose objects have simple and well-structured life
cycles.

* For stateful classes, consider using state diagrams to reason systematically about
the abstract states of the object of the classes and their life cycle;

15 Prior to Java 8, local variables referenced within anonymous classes had to be declared final.
With Java 8 the compiler can infer variables to be effectively final without the keyword.
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¢ Minimize the number of meaningful abstract states for objects of a class: ensure
it is not possible to put the object in an unnecessary state, and avoid introducing
TEMPORARY FIELDSt or convenience fields;

* Avoid using null references to represent legal information in objects and vari-
ables; consider using optional types or the NULL OBJECT pattern to represent ab-
sent values, if necessary;

¢ Consider declaring instance variables final whenever possible;

* Be explicit about whether objects of a class should be unique or not;

» If objects are not designed to be unique, override the equals and hashCode
methods; if objects should be unique, consider using the FLYWEIGHT pattern to
enforce uniqueness;

e Consider an explicit structure, such as SINGLETON or dependency injection, for
managing the object of classes that should have only one shared instance.

¢ Remember that additional data can be attached to instances of inner classes, €i-
ther in the form of a reference to an instance of an outer class, or as copies of
local variables captured in a closure.

Further Reading

The Gang of Four book [7] has the original treatment of the FLYWEIGHT and SINGLE-
ToN patterns. Chapter 3 of Refactoring: Improving the Design of Existing Code [4]
mentions the TEMPORARY FIELDT and LoNG METHODST antipatterns. The entry Intro-
duce Null Object in Chapter 8 discusses the idea of NULL OBJECT.

Chapter 10 of Java 8 in Action [16] is entitled Using Optional as a better alter-
native to null, and provides more details and examples on the use of the optional
type. This is also where I found the anecdote about Tony Hoare. Item 55 in Effective
Java [2] provides useful insights on when and how to use optional types.

The API documentation for object #equals (Object) and Object#hashCode ()
provide additional information on the meaning of equality in Java. The section on
nested classes in the Java Tutorial [11] is a good reference for additional coverage
of this topic.
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Chapter 5
Unit Testing

Concepts and Principles: Annotations, JUnit, metaprogramming, test
coverage, test suites, unit testing;

Unit testing is a practice wherein we automatically execute our code to check that it
does what we think it should. With unit testing, we can build a collection of tests to
check that our expectations about how the code works conform to reality. In addi-
tion, these tests can be quickly executed at any point in the development process to
confirm that the behavior of the code still meets the expectations we captured in our
tests. Writing unit tests also provides insights into the quality of a design, because
classes with many dependencies or objects with a complex state space will be diffi-
cult to test effectively. This chapter introduces mechanisms that facilitate unit testing
(metaprogramming and unit testing frameworks) and presents basic techniques for
designing unit tests and evaluating their quality.

Design Context

The first examples focus on the library function to compute the absolute value of
an integer (Math.abs (int) ). The remainder of the chapter discusses the testing of
code derived from design elements of the Solitaire sample application, starting with
amethod of the suit enumerated type. For simplicity, the later examples are slightly
adapted from the actual project code. They revolve around FoundationPile, a class
that represents one of the four piles where finished suits are accumulated in a game
of Solitaire. The final design context concerns the testing of class GameMode1, which
encapsulates the entire aggregated state of a game in progress.
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5.1 Introduction to Unit Testing

Software quality problems are often caused by programmers writing code that does
not always do what they expect, and the programmers remaining ignorant of this
mismatch between expectations and reality. To illustrate this issue as concretely
as possible, while reviewing some of the concepts we have seen previously, let us
consider the following method to retrieve an instance of a class card that represents
the playing card specified by a textual description.

J K *
* Returns the card that corresponds to the input description.
*
* @param pCardAsString Describes a card in the form
"RANK of SUIT", where RANK is a valid rank name
and SUIT is a valid suit name (case insensitive).
@return The card described by pCardAsString.
@throws IllegalArgumentException if the input does not
describe a valid card in the required form.

*

%

*

* (@pre pCardAsString != null
*/
public static Card toCard(String pCardAsString) {
String[] parts = pCardAsString.toUpperCase().split (" ");

return Card.get (Rank.valueOf (parts[0]),Suit.valueOf (parts[2]));
}

This implementation first splits the input string in different parts as separated
by whitespace using the split library method. Then, it relies on the valueof
method created for each enumerated type to retrieve the corresponding instance of
the type (e.g., "King" becomes Rank . KING). Conveniently, method value0Of throws
an IllegalArgumentException if it cannot convert the string to the name of an
enum constant, which will propagate out of method tocard to fulfill that part of the
specification.

At a glance, and with insufficient caffeine, this code looks reasonable. If we input
any valid string, such as “King of Hearts”, we receive the corresponding card. And
if we input strings with an invalid rank or suit, such as “X of Clubs”, we get the
expected exception. Unfortunately, this simple-looking code is full of bugs. Among
others, if the separator “of”” is missing or mistyped, the method does not behave as
expected.

One way to detect bugs, and to gain confidence that a part of the code does what
we expect, is to test it. Testing is a software quality assurance technique that can take
many forms. In this book, I focus on one specific testing approach called unit testing.
The goal of unit testing is to test small parts of the code separately, in isolation. This
way, if a test fails, we know where to look for problems. Writing unit tests also helps
us think more rigorously about the behavior our code should have. For example, the
specification of the method above is ambiguous about whether the qualifier “case
insensitive” applies to the separator “of” or not, but to test this behavior we need a
precise specification.
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A unit test consists of one or more executions of a unit under test (UUT) with
some input data and the comparison of the result of the execution against some
oracle. A UUT is whatever part of the code we wish to test in isolation. In prac-
tice, UUTs are often individual methods, but in some cases they can also be entire
classes, initialization statements, or certain paths through the code. The term oracle
designates the expected result of the execution of a UUT.

For example, the statement: Math.abs (-5) == 5; technically qualifies as a test.
In this case, the UUT is the library method Math.abs (int), which computes the
absolute value of its input. The input data is the integer literal -5, and the oracle is
the value 5. The comparison of the result of executing the UUT with the oracle is
called an assertion. The name captures the idea that the role of the comparison is to
assert that the result is what we expect.

When testing instance methods, it is important to remember that the input data
includes the implicit argument (the instance that receives the method call). As a
second example that involves an implicit argument, let us consider a version of the
suit enumerated type that includes an additional method sameColoras (suit). In
a standard deck of cards, the Clubs and Spades suits are printed in black and the
Diamonds and Hearts are printed in red.

public enum Suit {
CLUBS, DIAMONDS, SPADES, HEARTS;

public boolean sameColorAs (Suit pSuit) {
assert pSuit != null;
return (ordinal() - pSuit.ordinal()) % 2 == 0;

}

With this design, we are not returning the color of a Suit instance, but rather,
whether the suit is of the same color as some other suit instance. In a game where
the color of a suit does not matter, only whether it is the same color as a given suit,
this design decision follows the principle of information hiding. Returning to our
example, something to note is that the method was written by a programmer who
favors compact code over clarity of intent and robustness. To give ourselves confi-
dence that this works as expected despite the hackery, we can test the method by
calling it with a specific input and comparing the result with the expected value:

public static void main(String[] args) {

boolean expected = false;

System.out.println (expected == CLUBS.sameColorAs (HEARTS)) ;
}

This example makes it clear that although method sameColoras takes a single ex-
plicit argument, there are in fact two arguments to the UUT: the explicitly provided
argument (suit.HEARTS), and the implicit argument: Suit.CLUBS. According to
the definition of a unit test provided above, this main method qualifies as a unit test:
it includes a UUT (suit#sameColorAs), some input data (CLUBS and HEARTS), an
oracle (false), and an assertion that compares the result with the oracle. Executing
the main method will tell us whether the test passes or not.
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If we wanted to increase the number of inputs we test for sameColoras, we could
add additional pairs of suits. Because there are only four suits, we could test all pos-
sible inputs for sameColoras with a mere 16 tests. This achievement, called exhaus-
tive testing, is rarely possible (see Section 5.9). However, in the present case, writ-
ing an exhaustive test is trivial and executing it will show that method sameColoras
works correctly for all possible inputs. This is good news, but only ephemerally so,
because source code is not set in stone. To continue with our scenario, let us say
that the code is later changed to reorder the suits as follows without updating the
sameColorAs method:

CLUBS, SPADES, DIAMONDS, HEARTS;

In this case, running the test again will immediately reveal a bug introduced by
the fact that sameColoras relies on an undocumented and unchecked assumption
about the order of enumerated values. This example illustrates the second major
benefit of unit tests: in addition to helping detect bugs in new code, they can also
check that tested behavior that used to meet some specific expectation still does
meet that expectation even after the code changes. Running tests to confirm that
previous expectations about the behavior of the code are still respected, or to identify
deviations from expected behavior caused by changes, is called regression testing.

Finally, an important observation about testing relates to what it cannot do. Test-
ing cannot verify code to be correct. When a test passes, it only shows that the
specific execution of the code that is being tested behaves as expected. There are
software engineering techniques designed to provide certain guarantees about all
possible code executions for a specific code element, but testing is not one of them.
Section 5.9 provides further explanations of why testing is not a verification tech-
nique.

5.2 Unit Testing Framework Fundamentals with JUnit

Although it is possible to test a system manually, unit testing is normally done au-
tomatically. Because in software development the way to automate anything is to
write code to do it, to automate software testing we also write code to test other
code. This task is typically supported by a unit testing framework. The example
with the main method in the previous section, although it qualifies as automation,
was only for illustration purposes and is not a recommended way to test production
code.

Unit testing frameworks automate a lot of the mundane aspects of unit testing,
including collecting tests, running them, and reporting the results. In addition to
tools to collect and run tests and display the results, frameworks also include a set
of constructs to allow developers to write tests in a structured way and, if they so
choose, efficiently. The major constructs supported by testing frameworks are zest
cases, test suites, test fixtures and assertions. The dominant unit testing framework
for Java is called JUnit. I will introduce the basics of this framework sufficiently to
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illustrate all of the testing techniques covered in this chapter. However, this chap-
ter is not a tutorial on JUnit, and the Further Reading section provides pointers to
additional information and coaching on how to use JUnit.

In JUnit, a unit test maps to a method. The code below illustrates a series of
simple unit tests with JUnit.
public class AbsTest {

@Test

void testAbs_Positive() {

assertEquals (5, Math.abs (5));
}

@Test

void testAbs_Negative () {
assertEquals (5, Math.abs (-5));

}

public void testAbs_Min () {
assertEquals (Integer.MAX VALUE,Math.abs (Integer.MIN_VALUE)) ;
}
}

The @Test annotation instance indicates that the annotated method should be run
as a unit test. Section 5.4 explains annotations in more detail. For now, it suffices to
say it is a marker we put in the code to indicate that the method is a unit test.! The
code example above shows a fest class that defines three tests, all intended to test
the library method Math.abs (int).

To constitute proper tests, test methods should contain at least one execution of
a unit under test. The way to automatically verify that the execution of a unit under
test has the expected effect is to call assert methods. Assert methods are differ-
ent from the assert statement. They are declared as static methods of the JUnit
Assertions class and all they do is test a predicate and, if the predicate is false,
report a test failure. The JUnit framework includes a component called a fest run-
ner, which automatically scans some input code, detects all the tests in the input,
executes them, and then reports whether the tests passed or failed. Figure 5.1 shows
a screenshot of the result of executing all the tests in the test class AbsTest (above),
using a version of the test runner available through the Eclipse integrated devel-
opment environment. Two tests passed but one test, testAbs_Min, failed. Perhaps
it seems surprising that the absolute value of Integer.MIN_VALUE is not, in fact,
Integer.MAX_VALUE. This quirk is explained in the documentation for the method:

Note that if the argument is equal to the value of Integer. MIN_VALUE, the most negative
representable int value, the result is that same value, which is negative.

The reason for this design choice is imposed by the convention used to encode
integers in Java, which allows for an extra negative number compared to the corre-
sponding positive numbers. In addition to their bug detection potential, unit tests are
a great way to surface corner cases.

I The definition of the eTest annotation is defined in the JUnit library, which must be added to a
project’s class path before it can be used. This chapter is based on JUnit version 5.
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Finished after 0.074 seconds

Runs: 3/3 B Errors: O B Failures: 1
1

v HAbsTest [Runner: JUnit 5] (0.013 s)
[EEltestAbs_Max() (0.012 s)
tEltestAbs_Positive() (0.001 s)
tEltestAbs_Negative() (0.000 s)

- = =)
= Failure Trace Bi~s

0 org.opentest4j.AssertionFailedError: expected: <2147483647> but was: <-2147483648>
= at org,junitjupiter.api@5.11.0/org.junit,jupiter.api.AssertionFailureBuilder.build(Assertion
= at designbook/e3.chapter5.AbsTest.testAbs_Max(AbsTest java:34)

= at java.base/java.util. ArrayList.forEach(ArrayList.java:1596)

= at java.base/java.util. ArrayList.forEach(ArrayList.java:1596)

Fig. 5.1 Result of running JUnit using class absTest in the Eclipse IDE

5.3 Organizing Test Code

A collection of tests for a project is known as a fest suite. By default, a project’s test
suite consists of all the unit tests for the production code in the project. However,
it may sometimes be desirable to run only a certain subset of the tests (for exam-
ple, to focus on a specific feature, or to save some time). Unit testing frameworks
provide mechanisms to define arbitrary tests suites or, more generally, to run certain
subsets of unit tests. As one example, JUnit provides a @Suite annotation that al-
lows a developer to list a number of test classes to be executed together. As another
example, the JUnit plug-in for the Eclipse IDE allows users to execute the tests for
only one package, or even a single test class or method. Because executing tests is
a concern somewhat independent from the issue of designing them, the rest of the
chapter focuses on writing the tests themselves.

A common question when building a suite of unit tests is how to organize our
tests in a sensible manner. There are different approaches, but in Java a common
idiom is to have one test class per project class, where the test class collects all the
tests that test methods or other usage scenarios that involve the class. Furthermore,
it is common practice to locate all the testing code in a different source folder with
a package structure that mirrors the package structure of the production code. The
rationale for this organization is that, in Java, classes with the same package name
are in the same package scope independently of their location in a file system. This
means that classes and methods in the test package can refer to non-public (but
non-private) members of classes in the production code, while still being separated
from the production code. Figure 5.2 illustrates this practice. The figure shows a
sample of tests in a test folder that match corresponding classes in the src folder.
To emphasize the connection between the two, a common convention is to name the
test class with the name of the production class it tests, followed by the suffix Test.
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Fig. 5.2 Test suite organiza- v =4 Solitaire
tion for the Solitaire sample v Fsrc
application v ca.mcgill.solitaire.cards
> [ Card java
> [% CardSerializer java
>[4 CardStack java
v Ftest

v # ca.mcgill.solitaire.cards
> [% CardSerializerTest java
> [% CardStackTest java
> [f CardTestjava

5.4 Metaprogramming

In the previous section, we saw that to indicate that a method is a test, we annotate
it with the string @Test. The unit testing framework can then rely on this annotation
to detect which methods are tests, and proceed to execute these methods as part of
the execution of the test runner. This approach is special in that it requires the code
to manipulate other code. Specifically, the testing framework first scans the code
to detect tests, and then executes the code, without having any code that calls the
test methods explicitly by name. This strategy is an illustration of a general pro-
gramming feature called metaprogramming. Metaprogramming is the production of
code that operates on a representation of a program’s code. Although it may seem
confusing at first, metaprogramming is just a special case of general-purpose pro-
gramming. When we write code, this code typically operates on data that represents
various things in the world (playing cards, geometric shapes, bank records, etc.).
With metaprogramming, this data happens to be pieces of software code (classes,
methods, fields, etc.). Although metaprogramming is a programming feature, it
is instrumental for testing, and can be used to implement many design ideas. In
Java, metaprogramming is called reflection, and library support for metaprogram-
ming features is available through the class java.lang.Class and the package
java.lang.reflect.

Introspection

The most basic metaprogramming task is to obtain a reference to an object that
represents a piece of code to learn about it, a procedure called introspection. In Java,
the class class<T> is the main access point for metaprogramming. For example, to
obtain a reference to an object that represents the string class, we can do:

try {
String fullyQualifiedName = "java.lang.String";
Class<String> stringClass =
(Class<String>) Class.forName (fullyQualifiedName) ;
} catch (ClassNotFoundException e) {
e.printStackTrace();

}
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The call to Class. forName takes as input the fully-qualified name of the String
class and returns a reference to an instance of class class that represents class
String, as illustrated in the object diagram of Figure 5.3.

Fig. 5.3 Instance of class
Class that represents class
String

main: :Class

stringClass = —/ name = "java.lang.String"

Calls to method forName are brittle because the requested class may not exist. In
the example, the call is enclosed in a t ry-catch block. Method forName declares
the checked exception ClassNotFoundException and throws it whenever the ar-
gument does not correspond to the fully-qualified name of a class on the class path.
This may seem easy to prevent in the example above, given the use of a string lit-
eral to specify the name of the argument to forName. However, any string can be
supplied as argument to Class. forName, SO the requested class name may not be
known at compile time, as in the example below:

public static void main(String[] args) {
try {
Class<?> theClass = Class.forName (args([0]);

}
catch (ClassNotFoundException e) {

Jx e x/

}

For the same reason, we have to use a type wildcard as the instance of the type
parameter in the type declaration of the variable that receives the reference supplied
by forName. In the last example, the variable is declared as class<?>. The exact
functioning of the type wildcard is outside the scope of this book, but for now it
suffices to say that it acts as a placeholder for any type. In the previous example,
because we know exactly which type parameter is appropriate for class card, we
can use a downcast instead.

Besides the forName library method, Java offers two other ways to obtain a ref-
erence to an instance of class Class that are less brittle: class literals, and through
an instance of the class of interest. Both strategies are illustrated in the code below:

Class<String> stringClassl = String.class;

String someString = "Hello, World!";

Class<?> stringClass2 = someString.getClass();
System.out.println(stringClassl == stringClass2);

The first line shows the use of class literals. In Java, a class literal is a literal ex-
pression that consists of the name of a class followed by the suffix .class, and that
refers to a reference to an instance of class Class that represents the class named
before the suffix. So, string.class refers to the instance of class Class that rep-
resents class string. Because, in the case of class literals, the argument T to the
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type parameter of Class<T> is guaranteed to be known at compile time, we can
include it in the variable declaration. Class literals are the least brittle way to obtain
a reference to an instance of class Class, but they require that we know the exact
class to introspect at compile time.

The final way to obtain an instance of class Class is through an instance of the
class, as illustrated in the second and third lines of the code fragment. As will be
explained in detail in Chapter 7, it is possible to call method getClass () on any
object in a Java program, and the method will return a reference to an instance of
class class that represents the run-time type of the object. Because of polymor-
phism, this type may not be known at compile time, so in this case also we have to
use the type wildcard in the declaration of the variable.> However, because any call
to getClass () is guaranteed to return a valid reference to an instance of Class, the
method does not declare to throw an exception.

The last line in the code fragment illustrates a very important property of class
Class: its instances are unique (see Section 4.6). If executed, the code should always
print t rue on the console. Indeed, class c1ass has no accessible constructor, and its
instances can be considered to be unique flyweight objects (see Section 4.7).

With metaprogramming, we can introspect any class, including class class. This
may at first seem contrived, but it is actually not a special case: class Class is just
another class. The following code:

Class<Class> classClass = Class.class;

will produce the object graph illustrated in the diagram in Figure 5.4.

Fig. 5.4 Object graph for an
instance of class.class

main: :Class

classClass= —/ name = "java.lang.Class"

Obtaining an instance of class class is only the first step for introspection. The
interface to class class provides numerous methods that can be called to obtain ob-
jects that represent the members of the class, its superclass, etc. As one example of
endless possibilities, the following code fragment prints the name of all the meth-
ods declared in class string. This example makes use of class Method, a library
class intended to represent methods in Java code. Similar classes exist to represent
constructors (Constructor) and fields (Field).

for (Method method : String.class.getDeclaredMethods()) {
System.out.println (method.getName ());
}

2 In this case it is possible to use a type bound, e.g., Class<? extends String>.



106 5 Unit Testing

Program Manipulation

Obtaining information about a code base, or code introspection, only constitutes the
most basic form of metaprogramming. We may also want to manipulate the code of a
program. Unlike more dynamic languages, Java does not allow adding or removing
members from classes (and objects, by extension). However, it is possible to use
metaprogramming features to change the accessibility of class members, set field
values, instantiate objects, and invoke methods. I only provide a small overview
of the features most relevant to software testing and design in general. The API
documentation of the relevant library classes will provide the catalog of possibilities.

For this example, we will return to the version of class card seen in Section 4.7,
namely a class that realizes the FLYWEIGHT pattern and has a private constructor to
prevent the creation of duplicate playing cards. Now we will use metaprogramming
to get around the pattern and create a duplicate Ace of Clubs.

try {
Card cardl = Card.get (Rank.ACE, Suit.CLUBS);
Constructor<Card> cardConstructor =

Card.class.getDeclaredConstructor (Rank.class, Suit.class);

cardConstructor.setAccessible (true);
Card card2 = cardConstructor.newInstance (Rank.ACE, Suit.CLUBS);
System.out.println(cardl == card2);

} catch (ReflectiveOperationException e) {
e.printStackTrace();

In this example, the second statement obtains a reference to an instance of class
Constructor that represents the (private) constructor of class card. To make calls
to this constructor accessible in a scope outside its class, the third statement changes
the accessibility of the constructor, effectively bypassing the private keyword in
the code. The fourth statement calls newInstance onthe Constructor object. This
call makes a new instance of the declaring class of the constructor represented by
the Constructor instance, as opposed to a new instance of class Constructor. As
this is class card, and the constructor of this class requires two arguments of type
Rank and suit, we pass values of these types to the newInstance call. Because
a lot of things can go wrong with a reflective constructor invocation, most of the
methods in this example declare to throw checked exceptions of various types, the
supertype of which is ReflectiveOperationException.

Annotations as Program Metadata

With metaprogramming, it is possible for code to operate not only on data that
consists of code elements (e.g., classes, methods, fields), but also on metadata about
these code elements. In Java, it is possible to attach additional information (i.e.,
meta-information) to code elements in the form of annotations. We have already
seen one type of annotation: the use of @Test to indicate that a method is a unit test
in JUnit. An annotation type is declared similarly to an interface, for example:



5.5 Structuring Tests 107

public @interface Test {}

Then, annotation instances can be added to the code, in the form @Test. The main
advantage of annotations is that they are typed and checked by the compiler. The
@Test annotation used to flag unit tests in JUnit is thus a type annotation provided by
the JUnit library, and its use is checked by the compiler. Annotations support many
other features (see Further Reading), but their main usage scenario is to provide
a way to add structured, type-checked metadata to some code elements, that can
then be read by the compiler, development environments, unit testing frameworks,
and similar tools. We will see other example applications of annotations later in the
book. Because they are officially part of the code, information about annotations can
also be accessed through metaprogramming.’

5.5 Structuring Tests

Writing unit tests for non-trivial classes is often a challenging creative process, not
unlike writing production code. For this reason, there is no standard formula or tem-
plate for writing the code of a unit test. In fact, browsing the test suites of different
open-source projects will show that different communities follow different styles
and use different testing techniques. This being said, certain basic principles are
generally agreed upon, including that unit tests should be fast, independent, repeat-
able, focused, and readable [8].

e Fast. Unit tests are intended to be run often, and in many cases within a
programming-compilation-execution cycle. For this reason, whatever test suite
is executed should be able to complete in the order of a few seconds. Otherwise,
developers will be tempted to omit running them, and the tests will stop being
useful. This means that unit tests should avoid long-running operations such as
intensive device I/O and network access, and leave the testing of such function-
ality to tests other than unit tests. These could include, for example, acceptance
tests or integration tests.

* Independent. Each unit test should be able to execute in isolation. This means
that, for example, one test should not depend on the fact that another test exe-
cutes before to leave an input object in a certain state. First, it is often desirable
to execute only a single test. Second, just like code, test suites evolve, with new
tests being added and (to a minimum extent) some tests being removed. Test in-
dependence facilitates test suite evolution. Finally, JUnit and similarly-designed
testing frameworks do not guarantee that tests will be executed in a predictable
order. In practice, this means that each test should start with a fresh initialization
of the state used as part of the test.

3 However, only annotation instances of annotation types marked with the eRetention-
(value=RUNTIME) meta-annotation can be accessed in this way. See Further Reading for a ref-
erence to complementary information on annotations that covers meta-annotations.
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* Repeatable. The execution of unit tests should produce the same result in differ-
ent environments (for example, when executed on different operating systems).
This means that test oracles should not depend on environment-specific proper-
ties, such as display size, CPU speed, or system fonts.

* Focused. Unit tests should exercise a slice of code execution behavior that is as
narrow as possible. The rationale for this principle is that the purpose of unit
tests is to help identify faults. If a unit test comprises 500 lines of code and tests
a whole series of complex interactions between objects, it will not be easy to
determine what went wrong if it fails. In contrast, a test that checks a single input
on a single method call will make it easy to home in on a problem. Some have
even argued that unit tests should comprise a single assertion [8]. My opinion is
that in many cases this is too strict and can lead to inefficiencies. However, tests
should ideally focus on testing only one aspect of one unit under test. If that unit
under test is a method, we can refer to it as the focal method for the test.

* Readable. The structure and coding style of the test should make it easy to iden-
tify all the components of the test (unit under test, input data, oracle), as well as
the rationale for the test. Are we testing the initialization of an object? A special
case? A particular combination of values? Choosing an appropriate name for the
test can often help in clarifying its rationale.

For example, let us write some unit tests for a method canMoveTo of a hypothet-
ical class FoundationPile that could be part of the design of the Solitaire example
application. The method should return t rue only if it is possible to move the input
pCard to the top of the pile that an instance of the class represents. According to
the rules of the game, this is only allowed if the pile is empty and the input card is
an ace, or if the input card is of the same suit as the top of the pile, and of a rank
immediately above the rank of the card at the top of the pile (e.g., you can only place
a Three of Clubs on top of a Two of Clubs).

public class FoundationPile {

public boolean isEmpty () { ... }
public Card peek() { ... }

public Card pop() { ... }

public void push(Card pCard) { ... }

public boolean canMoveTo (Card pCard) {

assert pCard != null;
if (isEmpty()) {

return pCard.rank () == Rank.ACE;
}
else {

return pCard.suit () == peek().suit () &&

pCard.rank () .ordinal () ==
peek () .rank () .ordinal () + 1;

As our first test, we will keep things small and only test for the case where the
pile is empty and the result should be false:
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public class FoundationPileTest {

@Test
void testCanMoveTo_Empty_ReturnsFalse () {
FoundationPile emptyPile = new FoundationPile () ;

Card threeOfClubs = Card.get (Rank.THREE, Suit.CLUBS);
assertFalse (emptyPile.canMoveTo (threeOfClubs));
}

This test respects our five desired properties. It will execute with lightning speed,
be independent from any other test that could exist, and is not affected by any en-
vironment properties. It is also focused, not only on a single method, but also on a
specific input and return value combination for the method. Finally, many proper-
ties of this test add to its readability. First, the name of the test encodes the name
of the focal method, the input of interest (an empty pile) and the expected value
(false). Second, the names of the variables describe their content. Finally, the asser-
tion statement is self evident. Reading the last line of the test, we see that calling
canMoveTo with a Three of Clubs on an empty pile is expected to return false. We
can then use the same clean structure to create a test for the case where canMoveTo
should return t rue on an empty pile simply by replacing the input card with an ace,
changing the assertion method to assertTrue, and updating the name of the test in
consequence.

Test Fixtures

So far, we are only testing cases that involve an empty pile, which has limited cov-
erage. In other words, our tests only exercise the true branch of the if statement, so
part of the method’s logic remains untested. This issue will be further discussed in
Section 5.9. For now, let us mitigate this limitation by writing an additional test in
the same class

@Test
void testCanMoveTo_NotEmptyAndSameSuit_ReturnsFalse () {
FoundationPile pile = new FoundationPile();

Card aceOfClubs = Card.get (Rank.ACE, Suit.CLUBS);
pile.push (aceOfClubs);

Card threeOfClubs = Card.get (Rank.THREE, Suit.CLUBS);
assertFalse (pile.canMoveTo (threeOfClubs));

This test improves the test suite by adding to the coverage. However, we already
note a lot of redundant code between this test and the previous ones we have written,
including the code to instantiate FoundationPile and the code to create cards. If
we had, say, 20 tests, this would add up to a lot of clutter. In test classes that group
multiple test methods, it will often be convenient to define a number of default
objects or values to be used as receiver objects, explicit parameters, and/or oracles.
This practice helps limit the problem of DUPLICATED CODE{ in test classes.
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Baseline objects used for testing are often referred to as a test fixture, and de-
clared as fields of a test class. However, for the reasons discussed above, and in
particular because JUnit provides no ordering guarantee for test execution, it is cru-
cial to preserve test independence. This implies that no test method should rely on
the fixture being left in a given state by another test. Conveniently, JUnit 5 will, by
default, instantiate a fresh version of the test class before running any test method.
For this reason, the values of the fields of the test class will contain their initial value
when any test executes.* Of course, immutable objects do not need to be reinitial-
ized, so they can be stored as static fields of the class. The code below shows an
improved version of our test class, which now uses a test fixture.

public class FoundationPile Test {
private static final Card ACE_CLUBS
Card.get (Rank.ACE, Suit.CLUBS) ;
private static final Card TWO_CLUBS
Card.get (Rank.TWO, Suit.CLUBS) ;
private static final Card THREE_CLUBS =
Card.get (Rank.THREE, Suit.CLUBS) ;

private final FoundationPile aPile = new FoundationPile();

@Test

void testCanMoveTo_Empty_ReturnsFalse () {
assertFalse (aPile.canMoveTo (THREE_CLUBS) ) ;

}

@Test

void testCanMoveTo_Empty_ReturnsTrue () {
assertTrue (aPile.canMoveTo (ACE_CLURBS) ) ;

}

@Test

void testCanMoveTo_NotEmptyAndSameSuit_ReturnsFalse () {
aPile.push (ACE_CLURBS) ;
assertFalse (aPile.canMoveTo (THREE_CLUBS) ) ;

}

This code not only avoids duplication, but also increases the readability of the tests
by decluttering them. The only regression in test readability is due to the fact that,
by using a field to refer to the pile, we lose our flexibility to name the pile with a
variable name that describes its state. In this context, this is a small price to pay for
the benefit of using the fixture. Although it would always be possible to alias the
aPile field into an appropriately named variable (e.g., emptyPile), it is not clear
that this would necessarily improve readability, because aliasing can also hinder
code comprehension.

4 As an alternative, it is possible to reuse an instance of the test class for multiple tests, but to
nominate a method of the test class to execute before any test method, and initialize all the required
structures afresh. These features are available in JUnit via different annotations.
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Code Exploration: Solitaire - FoundationsTest
Testing an aggregate class in practice.

Most of the examples in this chapter are simplified versions adapted
from the test suite of the Solitaire sample application. In Solitaire, class
FoundationsTest provides a complete example of test code for a collec-
tion of stack-like structures. Instead of a FoundationPile class with four
instances, the design involves a single Foundations class that stores the
four piles in one object and indexes each pile using the enumerated type
FoundationPile. The rest is very similar to the example in the chapter. Test
class FoundationsTest includes tests for canMoveTo that achieve complete
branch coverage. Because the class under test, Foundations, makes heavy
use of design by contract, there is no need for testing exception handling be-
havior.

5.6 Testing Exceptional Conditions

An important point when writing unit tests is that what we are testing is that the
unit under test does what it is expected to. This means that when using design by
contract, it does not make sense to test code with input that does not respect the
method’s preconditions, because the resulting behavior is unspecified. For example,
let us consider a version of method peek of class FoundationPile (introduced in
the previous section) which returns the top of the pile.

class FoundationPile {
boolean isEmpty () { ... }
/ *
* @return The card on top of the pile.
* @pre !isEmpty ()
*/
Card peek () { ... }
}

The documented precondition implies that the method cannot be expected to fulfill
its contract (to return the top card) if the precondition is not met. Thus, if we call the
method on an empty pile, there is no expectation to test. The situation is different,
however, when raising exceptions is explicitly part of the interface. Let us consider
the following slight variant of method peek ():
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class FoundationPile {
boolean isEmpty () { ... }
J/ *
* @return The card on top of the pile.
* @throws EmptyStackException if isEmpty ()

*/
Card peek() {
if (isEmpty()) {

throw new EmptyStackException();
}
V2 Y

}

In this case, calling peek on an empty pile should result in an EmptyStackExcep-
tion. This is part of the specified, expected behavior. If no exception is raised when
called on an empty pile, then the peek () method does not do what is expected, and
this means it is faulty. We should have a test to detect this potential fault.

With JUnit 5, the standard way to check that a method call raises the expected
exception is to use the assertThrows assert method. This method takes as argu-
ment an instance of class Class that represents the expected exception type, and
an instance of a subtype of the library interface Executable that executes the code
expected to cause the exception. This programming idiom thus requires the use of a
function object, as described in Section 3.4.

@Test
void testPeek_Empty () {
assertThrows (EmptyStackException.class, new Executable() {

public void execute() throws Throwable {
aPile.peek();

1)
}

In this example, I used an anonymous class to define the behavior of method
execute which, in this case, calls peek on an empty pile. The reason this seem-
ingly complicated setup is required is that we need our exception-causing code to
execute within the execution of assertThrows. For this reason, we pass in a func-
tion object of type Executable. When assert Throws executes, it calls execute ()
on its second argument, which normally triggers the exception.

In practice, lambda expressions are typically used with assertThrows. Lambda
expressions were briefly introduced in Section 3.4, and will be covered in detail
in Chapter 9. With a lambda expression, the use of assertThrows is much more
compact:

@Test
void testPeek_Empty_LambdaExpression () {

assertThrows (EmptyStackException.class, () -> aPile.peek());
}
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Code Exploration: JetUML - TestDiagramType
Testing exception handling behavior.

Class TestDiagramType contains examples of the use of assertThrows.
According to the specification of method fromName, if the user at-
tempts to retrieve an invalid diagram type, the test will check that an
IllegalArgumentException is raised as expected. Looking at the imple-
mentation of method fromName, one would notice that it is robust enough
to handle a null input in exactly the same way as an invalid non-null input.
Why write two distinct tests, then? I made this decision to clarify the behavior
for null inputs and to guard against future modifications that could alter this
behavior.

5.7 Encapsulation and Unit Testing

If we locate unit tests in the same package as the code they are testing, as described
in Section 5.3, then the tests have access to all fields and methods of the corre-
sponding classes, except for private members. However, there are situations where
test code may need access to private fields or methods, either to write assertions
verifying the outcome of a test, or to test private methods.

For example, let us consider that the interface to class FoundationPile (see
Section 5.5) does not include a method size () to return the number of cards in the
pile. Presumably, because FoundationPile does not have a size () method, and
following the principle of information hiding, we can assume that no part of the
production code needs this information. However, in unit tests, we might want to
check that the size of the pile changes as we push cards onto it. As for testing private
methods, a major obstacle is quite simply that we cannot call private methods of
other classes directly from test code. How can we deal with such situations? There
are three main approaches to accessing private members in the context of testing.

A first approach, which I refer to as the hard line, is to strictly respect the tight
encapsulation of the design and to work around it to the extent possible. In some
cases, it might be possible to access some of the private state of an object indirectly
through the accessible methods. For example, in the case of the FoundationFile
mentioned above, we can discover the size of the pile by popping all cards from a
pile into a list and then restoring the cards into the pile. In our testing code, we can
thus implement our own helper method to obtain the size of a pile:
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private static int size (FoundationPile pPile) {
List<Card> cards = new ArrayList<>();
while (!pPile.isEmpty()) {
cards.add (pPile.pop());
}

int size = cards.size();
while (!cards.isEmpty()) {
pPile.push (cards.removeLast ());

}

return size;

In fact, if the testing class needs only a single FoundationPile instance as a tar-
get object for testing, then it is possible to make this instance part of the scaffolding
and convert our helper method into an instance method of the test class (by referring
to a field apile instead of a formal parameter). Either way, we can now learn about
the state of the object without weakening its encapsulation. With the hard line ap-
proach, however, it is simply not possible to test private methods directly. Instead,
private methods have to be tested indirectly, by virtue of testing the accessible meth-
ods that rely on them. Some experts argue that this is the proper approach, because
private methods are internal elements of other, accessible methods, and therefore
are not really units that should be tested. However, this hard line approach results in
a loss of opportunities for testing small methods in isolation. There can exist situa-
tions where some nontrivial computation is neatly abstracted in a method restricted
to a class’s scope (i.e., made private), yet it remains worthwhile to ensure it meets
our expectations.

A second approach is to weaken the encapsulation of the production code for
the purpose of testing. This would typically mean removing the private access
modifier for methods, and thus giving the necessary method default visibility, which
makes them accessible to all other classes within the same package (see Section 2.3).
In our example, this could mean adding a new method size () with default visibility
to the FoundationPile class, along with removing the private modifier for any
method that should be tested in isolation. Methods made visible for testing should be
documented as such, ideally by using an annotation (see Section 5.4). Unfortunately,
weakening the quality of the encapsulation for the purpose of testing has a negative
impact on the quality of the encapsulation as a whole. Unless the class members
made visible for testing are carefully identified and only referred to from test code,
the risk is that other classes may come to depend on them, introducing additional
dependencies and making the design more fragile and difficult to understand.

A third approach is to use metaprogramming to get around access restrictions in
test code. For the sake of discussion, let us assume that class FoundationPile also
has a private method getsuit () that returns the suit of the cards in the pile, and
that we would like to test it separately.

private Suit getSuit () {
assert !isEmpty();
return aPile.getFirst () .suit();

}
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In our test code, we create a helper method that calls this private method using
metaprogramming.

public class TestFoundationPile {
private FoundationPile aPile = new FoundationPile();

private Suit executeGetSuit () {
try {
Method method =
FoundationPile.class.getDeclaredMethod ("getSuit");
method.setAccessible (true);
return (Suit) method.invoke (aPile);
}
catch (ReflectiveOperationException exception) {
throw new AssertionError ("Reflection error");
}
}

@Test
void testGetSuit () {
aPile.push (ACE_CLURBS) ;
assertSame (Suit.CLUBS, executeGetSuit());

}

In the test class, we define a helper method executeGetsuit that launches the ex-
ecution of the unit under test (getSuit ()) on an instance aPile, which forms part
of the test fixture. With this helper method, the code of the corresponding test looks
mostly normal. However, there is one big difference: the call to executeGetSuit ()
is not a direct call to the unit under test, getSuit (). Instead, the call is to a helper
method executeGetsuit () that uses metaprogramming to call the unit under test
while bypassing the access restriction of the private keyword. In contrast to weak-
ening encapsulation by removing the private keyword, metaprogramming enables
access to the private method only at one specific point in the testing code, which
eliminates the risk that other production code can be made to depend on the method
of interest. However, this approach results in brittle tests that can break if the asso-
ciated code is refactored. For this reason, it is best employed only when the benefits
are significant.

Code Exploration: Solitaire - TableauTest
Using metaprogramming to access private structures.

Class Tableau represents the seven piles of cards that fan downwards in
a game of Solitaire. It defines a private method getPreviousCard (Card)
that returns the card stacked under the input card in a given pile. Class
TableauTest provides a working implementation of an invocation of
getPreviousCard using metaprogramming, along with examples of tests that
access the private method in this way.
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5.8 Testing with Stubs

The key to unit testing is to test small parts of the code in isolation. In some cases,
however, factors can make it difficult to test a piece of code in isolation, for example,
when the part we want to test:

triggers the execution of a large chunk of other code;

includes sections whose behavior depends on the environment (e.g., system
fonts);

involves non-deterministic behavior (e.g., randomness).

Such a case is illustrated in the following design, which is a simplified version

of the Solitaire example application. The GameModel class has a tryToAutoPlay ()
method that triggers the computation of the next move by delegating the task to a
strategy which, due to polymorphism, could be any of a number of options (see Fig-
ure 5.5). Here we would like to write a unit test for the GameModel#tryToAutoPlay

method.
«interface»
aPlayingStrategy 1 PlayingStrate
GameModel {>—— ving had
getLegalMove(GameModelView):Move
AN
---------------------- L it Y
RandomStrategy GreedyStrategy SmartStrategy

Fig. 5.5 Playing strategies in GameModel

In this task we face at least four problems:

Calling the tryToAutopPlay method on an instance of GameModel will delegate
the call to getLegalMove on a strategy object, which will involve the execution
of presumably complex behavior to realize the strategy. This does not align well
with the concept of unit testing, where we want to test small pieces of code in
isolation.

The implementation of the strategy may involve some randomness.

We do not know which strategy would be used by the game engine. Yet, we need
to determine an oracle for the results.

It is unclear how this is different from testing the strategies individually.

The way out of this conundrum is to realize that the responsibility of GameMode1-

#tryToAutoPlay is not to compute the next move, but rather to delegate this to a
strategy. So, to write a unit test that tests that the UUT does what it is expected to
do, we only need to assert that it properly relays the request to obtain a move to a
strategy. This can be achieved with the help of a stub.
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A stub is a simplified version of an object that mimics its behavior sufficiently
to support the testing of a UUT that uses this object. Typically, a stub will also
contain some logging or other instrumentation code to provide information to the
test that can assist in completing the assertion. To use stubs, we also need a super-
type for classes we wish to create stub objects for. In our case, this is the interface
type PlayingStrategy. Continuing with our tryToAutoPlay situation, we start
by defining a stub for the strategy:
public class GameModelTest {

static class StubStrategy implements PlayingStrategy {
private boolean aExecuted = false;

public boolean hasExecuted() {
return aExecuted;

}

public Move getLegalMove (GameModelView pModelView) {
aExecuted = true;
return new NullMove () ;

This strategy does nothing except remember that its get LegalMove method has
been called, and returns a Move object of type NullMove (an application of the NuLL
OBJECT pattern). We can then use an instance of this stub instead of a real strategy
in the test. The challenge at this point is to initialize our game model with a stub
instead of a full-featured strategy. This task will be greatly facilitated by the use of
dependency injection in the overall design (see Section 3.8). Let us assume that we
designed the GameMode1 class to make it possible to inject the desired strategy when
initializing the class:
public class GameModel implements GameModelView {

private final PlayingStrategy aPlayingStrategy;

public GameModel (PlayingStrategy pStrategy) {
aPlayingStrategy = pStrategy;
}

public void tryToAutoPlay () {
aPlayingStrategy.getLegalMove (this);
}

}

Then injecting the stub and using it for the assertion is straightforward.

@Test

void testTryToAutoPlay () {
StubStrategy stub = new StubStrategy();
GameModel model = new GameModel (stub) ;
model.tryToAutoPlay () ;
assertTrue (stub.hasExecuted());
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In addition to demonstrating the use of stubs for testing, the above example il-
lustrates the benefits of limiting coupling between classes. The fact that GameModel
does not depend on any concrete playing strategy makes it easier to understand
and to test, because we can focus solely on the logic of the GameModel. If the
GameModel class had not provided a mechanism for injecting a strategy, testing the
tryToAutoplay method would have been much more difficult. One option would
have been to rely on reflection to inject the stub but, as discussed in Section 5.7,
this method is brittle and not generally recommended. In some cases, it can even be
worth it to refactor code to improve its testability, for example by replacing hard-
coded dependencies by an injection mechanism. This section provided only an in-
troduction to the use of stubs for testing. In practice, the use of stubs can get very
sophisticated, and frameworks exist to support this task if necessary.

5.9 Test Coverage

Up to now this chapter covered how to define and structure unit tests, but avoided
the question of what inputs to provide to the unit under test. Notwithstanding the
example of exhaustive testing in Section 5.1, it should be clear that, for the majority
of UUTs, it is not even physically possible to exhaustively test the input space.
For example, as discussed in Section 4.2, the number of different arrangements of
cards that an instance of class Deck can take is astronomical (2.2 x 10°®). Even with
cutting-edge hardware, testing any of the methods of class Deck for all possible
inputs (i.e., possible states of the implicit parameter) would take an amount of time
many times greater than the age of the universe. This is quite incompatible with the
requirement that unit tests execute quickly (see Section 5.5).

Hence, we need to select some input out of all the possibilities. This is a problem
known as test case selection, where test case can be considered to be a set of input
values for a UUT. For example, an instance of Deck with a single Ace of Clubs in
the deck is a test case of the method Deck.draw (). The challenge of the test case
selection problem is to test efficiently, meaning to find a minimal set of test cases
that provides us a maximal amount of testing for our code. Unfortunately, while
it is fairly intuitive what a minimal number of test cases is, there is no natural or
even agreed-upon definition of what an amount of testing is. However, there is a
large body of research and practical experience on the topic of test case selection
(see Further Reading for a recommendation). In this section, I only summarize the
key theoretical tenets and practical insights necessary to get started with test case
selection. There are two basic ways to approach the selection of test cases:

¢ Functional (or black-box) testing tries to cover as much of the specified behav-
ior of a UUT as possible, based on some external specification of what the UUT
should do. For the Deck.draw () method, this specification is that the method
should result in the top card of the deck being removed and returned. There are
many advantages to black-box testing, including that it is not necessary to access
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the code of the UUT, that tests can reveal problems with the specification, and
that tests can reveal missing logic.

e Structural (or white-box) testing tries to cover as much of the implemented
behavior of the UUT as possible, based on an analysis of the source code of the
UUT. An example is provided below. The main advantage of white-box testing
is that it can reveal problems caused by low-level implementation details that are
invisible at the level of the specification.

Functional testing involves selecting values at meaningful boundaries in the in-
put range given the documented behavior of the UUT. In many cases, this process is
relatively intuitive (for example, selecting a negative, zero, and positive value for in-
teger inputs, testing with empty data structures, etc.). Coverage of functional testing
techniques beyond this basis is outside of the scope of this book, so the remainder of
this section provides a review of the main concepts of structural testing. Let us con-
sider again the implementation of the canMoveTo method of class FoundationPile
(see Section 5.5), with the assert statement removed to simplify the discussion).

boolean canMoveTo (Card pCard) {
if (isEmpty())

return pCard.rank () == Rank.ACE;
}
else {
return pCard.suit () == peek().suit () &&
pCard.rank () .ordinal () == peek () .rank().ordinal() + 1;

We can intuitively see that the code structure can be partitioned into different
parts that might be good to test. First, there is the case where the pile is empty
(the true part of the if statement), and the case where it is not empty (the else
block). But then, each of these parts can also be partitioned into different sub-parts,
for example to cover the case where the cards are in the correct sequence, but of
different suits. In the general case, things can get hairy, and it is easy to get lost
without a systematic way to reason about the code.

One common method for determining what to test is based on the concept of
coverage. A test coverage metric is a number (typically a percentage) that deter-
mines how much of the code executes when we run our tests. Test coverage metrics
can be computed by code coverage tools that keep track of the code that gets ex-
ecuted when we run unit tests. This sounds simple, but the catch is that there are
different definitions of what we can mean by code, in the context of testing. Each
definition is a different way to compute how much testing is done. Certain software
development organizations may have well-defined fest adequacy criteria whereby
test suites must meet certain coverage thresholds, but in other cases, the insights
provided by coverage metrics are used more generally to help determine where to
invest future testing efforts. The following are three well-known coverage metrics
(there are many others, see Further Reading).
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Statement Coverage

Let us start with the simplest coverage metric: statement coverage. Statement cover-
age is the number of statements executed by a test or test suite, divided by the num-
ber of statements in the code of interest. Given the implementation of canMoveTo
shown above, the following test:

@Test

void testCanMoveTo_Empty_ReturnsFalse () {
assertFalse (emptyPile.canMoveTo (THREE_CLUBS)) ;

}

achieves 2/3 = 67% coverage, because the conditional statement predicate and the
single statement in the true branch are executed, and the single statement in the
false branch is not. The logic behind statement coverage is that if a fault is present
in a statement that is never executed, the tests are not going to help find it. Although
this logic may seem appealing, statement coverage is actually a poor coverage met-
ric. A first reason is that it depends on the detailed structure of the code. We could
rewrite the canMoveTo method as follows, and achieve 100% test coverage with
exactly the same test.

boolean canMoveTo (Card pCard) {

boolean result = pCard.suit () == peek().suit () &&
pCard.rank () .ordinal () == peek () .rank () .ordinal ()+1;
if (isEmpty () {
result = pCard.rank () == Rank.ACE;

}

return result;

The second reason is that not all statements are created equally, and there can be
quite a bit that goes on in a statement if this statement involves a compound Boolean
expression (as is the case of the first statement in the last example).

Branch Coverage

Branch coverage is the number of program branches executed by the test(s) divided
by the total number of branches in the code of interest. In this context, a branch is
one of the two possible outcomes of a condition (a decision point). Branch coverage
is a stronger metric than statement coverage in the sense that for the same coverage
result, more of the possible program executions will have been tested. Unfortunately,
the concept of branch coverage is ambiguous, due to the different possible interpre-
tations of the term branch. In the code of canMoveTo, there are only two branches
if we only consider the single i £ statement. However, both the t rue and the false
branches lead to statements that consist of Boolean expressions, which are them-
selves another type of condition because they have to possible outcomes (true or
false). To be consistent with popular coverage analysis tools, I adopt the defini-
tion that Boolean expressions within statements also introduce branches. Although
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more complex to determine, this definition is also more useful. With this definition,
the original code of canMoveTo exhibits four conditions: the if, the first return
statement, the first comparison in the second return statement, and the second com-
parison in the second return statement. Each of these four condition has a true and
false branch, for a total of eight branches. The only test written so far thus has only
2/8 = 25% branch coverage. If we add the other two tests shown in Section 5.5 to
the test suite:

@Test

void testCanMoveTo_Empty_ReturnsTrue () {
assertTrue (aPile.canMoveTo (ACE_CLUBS) ) ;

}

@Test

void testCanMoveTo_NotEmptyAndSameSuit_ReturnsFalse () {
aPile.push (ACE_CLUBS) ;
assertFalse (aPile.canMoveTo (THREE_CLUBS)) ;

}

we get 6/8 = 75%. This is pretty good, but our systematic coverage analysis points
out that we are actually missing two branches. One of the missing branches is the
case where the input card has the same suit as the pile and whose rank is immedi-
ately above the rank of the card at the top of the pile. The second missing branch
is the case where the input card is not of the same suit as the cards in the pile.
Branch coverage is one of the most useful test coverage criteria. It is well supported
by testing tools and relatively straightforward to interpret, and also subsumes state-
ment coverage, meaning that achieving complete branch coverage implies complete
statement coverage.

Path Coverage

There are other coverage metrics stronger than branch coverage. For example, one
could, in principle, compute a path coverage metric as the number of execution
paths actually executed over all possible execution paths in the code of interest.
Path coverage subsumes almost all other coverage metrics, and is a very close ap-
proximation of the entire behavior that is possible to test. Unfortunately, in many
cases, the number of paths through a piece of code will be unbounded, so it will not
be possible to compute this metric. For this reason, path coverage is considered a
theoretical metric, useful for reasoning about test coverage in the abstract, but with-
out any serious hope of general practical applicability. Interestingly, the number of
paths in the code of canMoveTo is actually only five, so, less than the number of
branches! The path coverage of the three-test test suite above can thus be computed,
at 3/5 = 60%. Because the structure of the code is without loops, this is not overly
surprising. However, as soon as loops enter the picture, reasoning about paths be-
comes troublesome.
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Insights

This chapter described techniques to structure and implement unit tests for a project,
and argued that unit tests can provide valuable feedback on the design of production
code. The following insights assume you have decided to adopt unit testing and are
using a unit testing framework.

Every unit test includes the execution of a unit under test (UUT), input data
passed to the UUT, an oracle that describes what the result of executing the UUT
should be, and one or more assertions that compare the result of the execution
with the oracle;

Design your unit tests so that they are focused, that is, that they isolate and test a
small and well-defined amount of behavior;

Design your unit tests to run fast, be independent from each other, and be repeat-
able in any computing environment;

Design your unit tests to be readable: consider using the name of the test and local
variables to add clarity about what you are testing and to describe the oracle;
Organize your test suite cleanly, with a clear mapping between tests and the code
units they test. Consider separate source code directories with a parallel package
structure for production and test code;

Metaprogramming is a powerful language feature that allows you to write code
to analyze other code. However, it must be used with care in production code,
because it is prone to run-time errors;

Type annotations can provide metadata about certain program elements, which
can then be accessed through metaprogramming;

Use test fixtures to structure your testing code cleanly. Remember that tests
should not make any assumptions about the order in which they are executed;
Do not test for unspecified behavior, and in particular for input that does not
respect a method’s preconditions;

Exceptions that can be raised are often an explicit part of a method’s interface, in
which case the raising of exceptions constitutes behavior that can be tested;

Try to avoid weakening the interface of a class only for the purpose of testing.
Instead, consider writing helper methods in the test class to obtain this informa-
tion. If you must make class members visible for testing, document this decision
with annotations. An alternative is to use metaprogramming;

To isolate the behavior of stateful objects that refer to many other objects, con-
sider using stubs to model the behavior of the component objects and provide
instrumentation to provide data about the execution of the stubs;

Use test coverage metrics to reason about how much of the program’s behavior
you are testing. Favor branch coverage over statement coverage;

Remember that having tests that pass does not guarantee that the code is correct.
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Further Reading

The book Effective Software Testing: A Developer’s Guide by Mauricio Aniche [1]
provides a comprehensive treatment of testing, including the definition of many test
coverage metrics. The Java Tutorial [11] provides a good introduction to annotations
and reflection (Java’s version of metaprogramming). Documentation on how to use
JUnit is available on the JUnit website.



®

Check for
updates

Chapter 6
Composition

Concepts and Principles: Aggregation, composition, delegation, Law of
Demeter, polymorphic copying, sequence diagram;

Patterns and Antipatterns: Gob cLASS{, MESSAGE CHAINT COMPOSITE,
DECORATOR, PROTOTYPE, COMMAND

Large software systems are assembled from smaller parts. In object-oriented design,
parts are connected through two main mechanisms: composition and inheritance.
Composition means that one object holds a reference to another object and dele-
gates some functionality to it. Although this sounds straightforward, unprincipled
composition can lead to disorganized code that is hard to understand and change.
This chapter provides a review of polymorphism and how it can be used to elegantly
compose objects together by following some well-known design patterns. The sec-
ond way of assembling systems is through inheritance, which is more complex and
is covered in Chapter 7.

Design Context

This chapter draws its code examples from various problems related to the modeling
of card games. The design problems address requirements at different levels of ab-
straction, from the management of low-level structures to represent a card source, to
high-level structures that can represent the entire state of a card game. To support a
discussion of a variety of potential design alternatives, the examples are not limited
to the context of a Solitaire application, but also consider other usage scenarios. For
the examples that do target the Solitaire application specifically, knowledge of the
game terminology will be useful: see Appendix C for definitions of the main game
concepts and terms and an overview of a game in progress.
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6.1 Composition and Aggregation

A general strategy for managing complexity in software design is to define larger
abstractions in terms of smaller ones. This is an application of the general divide and
conquer problem-solving strategy. In software design, if we want to organize our
code, data, and computation by separating them in different parts (classes, methods,
objects, etc.), we need a way to specify how the separate parts interact to form a
working software application.

One way to assemble different software parts is through composition. Generally
speaking, composition means that the functionality available through an object is
realized through one or more other objects. For example, an object of class Deck,
which represents a deck of cards, is composed of objects of class card. In Java,
composition is typically realized by having one object store a reference to other ob-
jects in instance variables, either directly or through a data structure. The object that
is composed of other objects is called the aggregate, whereas the objects being ag-
gregated are the (aggregated) elements. For example, a card object is an aggregate
of two elements: a Rank object and a suit object. The result of separating responsi-
bilities across different classes (or, consequently, objects) is called a decomposition.
In an effective decomposition, an object delegates some of its responsibilities to its
elements through method calls on the delegate. As a simple example, the responsi-
bility to determine the color of a suit (red or black) can be delegated to the instance
of the suit enumerated type, as opposed to being handled directly in class card
(see Section 5.1).

In some cases, aggregation relations in object-oriented design map directly to the
problem domain. For example, a real-life deck of playing cards is composed of play-
ing cards, and so it is in our design. In other cases, however, the relation between an
aggregate and its elements is more abstract and it does not have a direct mapping to
the real world. As an example, we can consider the injection of aPlayingStrategy
into a GameModel object that represents the state of a game in progress (discussed
in Section 5.8 and in different Code Exploration paragraphs). In reality, a game of
Solitaire does not really aggregate a strategy element: that is a decision we make
to organize code to respect design principles that include loose coupling and sepa-
ration of concerns. The distinction between composition as a parallel to reality vs.
composition purely as a consequence of the design process spans a spectrum. At one
end, we have the direct correspondence (e.g., a Deck aggregates instances of Card),
and at the other we have conceptual abstractions (e.g., a GameModel aggregates a
PlayingStrategy). Somewhere in the middle, we have decompositions that bor-
row concepts and terminology from the problem domain, but whose abstractions are
largely based on design decisions. An example of this intermediate level is the rela-
tion between a GameMode1 and a foundation pile (a pile of cards where finished suits
are accumulated). Here, the concept and name of a foundation pile are related to a
real game, but the decision to define a single Foundations class instead of relying
on four separate FoundationPile instances is largely an arbitrary decision.

Independently of the criteria used to define classes to achieve composition, the
corresponding objects end up composed of other objects which can themselves be



6.1 Composition and Aggregation 127

aggregates of objects. Ultimately, many structures in object-oriented programs are
object graphs that progressively aggregate their elements into more elaborate ob-
jects. Decomposition is crucial to break down a class that would otherwise be too
big and complex. In object-oriented development, it can be tempting to keep adding
more of the fields and methods needed to meet some requirements into a single
class. Because members of a class share private access to each other, little effort is
initially required to organize the code. However, this opportunistic approach often
leads to a Gop CLassT, that is, an unmanageable class that has access to all data and
can compute everything about it. God classes are a problem because they violate
practically every major principle of good design.

aDeck

Deck K>—

aTableau

Tableau K>—
GameModel K>——

aFoundations

Foundations

~N(s

aDiscardPile 1

CardStack

[N

Fig. 6.1 Class diagram of the GameModel. Composition relations are represented using the white
diamond decoration. The diamond is on the side of the aggregate.

Let us make this discussion more concrete by studying the GameModel class of
the Solitaire sample application. Figure 6.1 shows a class diagram of the GameMode1.
The diagram shows how class GameModel is an aggregate of one Deck, one Card-
Stack (the discard pile), one Foundations, and one Tableau. A first thing to ob-
serve is that in this version of the code, instead of having a Deck class aggregate
Card objects using the List library type, I defined a dedicated type cardstack that
provides a narrow interface dedicated to handling stacks of cards. The following is
a partial implementation:

public class CardStack implements Iterable<Card> {
private final List<Card> aCards = new ArraylList<>();

public void push (Card pCard) {
assert pCard != null && !aCards.contains (pCard);
aCards.add (pCard) ;

}
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public Card pop () {
assert !isEmpty();
return aCards.removelast ();

}

public Card peek () {
assert !isEmpty();
return aCards.getLast () ;

}

public void clear() {
aCards.clear();

}

public boolean isEmpty () {
return aCards.isEmpty();

}

public Iterator<Card> iterator () {
return aCards.iterator();

}

Technically, a game of Solitaire is just 13 piles of cards. It would have been pos-
sible to design the game by referring to 13 instances of Cardstack in GameModel
and implement all the game algorithms in the GameModel class. However, this class
would have been responsible for managing every aspect of every type of pile of
cards, which would have added up to a lot of code and a complex state space, mak-
ing it difficult to understand and test the class. Instead, the design makes use of
classes Foundations and Tableau. As shown in the diagram, these two classes ag-
gregate instances of cardstack. Following the principle of separation of concerns,
we can now move a lot of computation to these classes, and delegate to them when
necessary.

For example, class GameModel needs a method isvisibleInTableau (Card) to
determine whether a card is face up or down in the game tableau. In the design of
diagram 6.1, these requests would be delegated to class Tableau:

public boolean isVisibleInTableau (Card pCard) {
return aTableau.contains (pCard) && aTableau.isVisible (pCard);

}

In a class diagram, object composition is represented with an edge decorated with
a diamond on the side of the class whose objects aggregate instances of the element
class. The UML notation technically allows the distinction between two types of
composition: aggregation (white diamond) and composition (black diamond). How-
ever, the difference between these concepts can be murky, and experts disagree on
how to choose between aggregation, composition, or plain association in UML dia-
grams. I get around the issue by avoiding using the distinction. Because composition
is often understood to be a stronger form of aggregation, I exclusively use the white
diamond annotation for all types of aggregation/composition (see Section 3.3).
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Although it is technically possible to compose objects in arbitrary ways simply
by defining fields and passing object references around, unprincipled use of com-
position can degenerate into code that is difficult to understand. This chapter covers
different ways to keep a certain amount of organization in the use of composition
through the use of design patterns. The overarching goal of this chapter, however,
is to foster a general skill in using composition according to a well-defined design
plan with a clear underlying rationale.

Code Exploration: Solitaire - GameModel
An aggregate object with delegation.

The design of the Solitaire project is consistent with the diagram of Fig-
ure 6.1. Some methods of class GameModel simply delegate the call to
their aggregated objects. Examples include getScore (), getSubpile(...),
getTableauPile, and isVisibleInTableau(...).

6.2 The COMPOSITE Design Pattern

As a first principled use of composition, we will consider the situation where we
would like to have groups of objects behave like a single object. Let us say that we
are working on a card game that takes as input a source of cards. In Section 3.1,
I showed how we can use interfaces to decouple the behavior of a source of cards
from its implementation using interface types. The code below repeats the definition
of the cardsSource interface for convenience.

public interface CardSource {

J & *

* Removes a card from the source and returns it.
*

* @return The card that was removed from the source.
* @pre !isEmpty ()
*/

Card draw() ;

J ok *x
* @return true if there is no card in the source.
*/
boolean isEmpty();
}

By relying on this interface and the polymorphism it supports, we can write
loosely coupled code that can draw cards from any kind of source. The types of
card sources we can support with this interface are only limited by our imagina-
tion. For example, we could have a card source that consists of multiple decks of
cards, a card source that contains only the four aces, or only face cards, etc. Or any
combinations of these schemes (e.g., one deck and four extra aces).
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One way to support all these options is to write one class for each option, with
each class declaring to implement the cardSource interface:

public class Deck implements CardSource { ... }

public class MultiDeck implements CardSource { ... }
public class FourAces implements CardSource { ... }

public class FaceCards implements CardSource { ... }
public class DeckAndFourAces implements CardSource { ... }

The main characteristic of this design decision is that the set of possible imple-
mentations of CardSource is specified statically (in the source code), as opposed
to dynamically (when the code runs). Three major limitations of this static structure
are:

e The number of possible structures of interest can be very large. As illustrated
by the fifth definition, DeckAndFouraces, supporting all possible configurations
leads to a combinatorial explosion of class definitions.

» Each option requires a class definition, even if it is rarely used. This clutters the
code unnecessarily, because most implementations would probably look similar.

e It is very difficult to accommodate the situation where a type of card source
configuration is needed that was not anticipated before launching the application.

The above limitations are a consequence of the static nature of the design. A gen-
eral solution is to support an open-ended number of configurations by relying on
object composition as opposed to class definition. The fundamental idea to support
this approach is to define a class that represents multiple Cardsources while still
behaving like a single one. This core idea is captured as the CoMPosITE design pat-
tern. Figure 6.2 shows a class diagram of the ComposITE applied to the Cardsource
context.

Only depends on Component j

Component

CardSource mo CompositeCardSource

Client RS <
draw():Card add(CardSource):void

isEmpty():boolean

R _4 _________ \ Composite
Leaf
ea ---- Deck CardSequence

Fig. 6.2 Application of CoMPOSITE to CardSource

«interface»

The diagram shows the application of the pattern, and the roles of each element in
the solution template are indicated in notes. In this pattern, the three main roles are
component, composite, and leaf. The composite element has two important features:
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o It aggregates a number of different objects of the component type (CardSource
in our case). Using the component interface type is important, as it allows the
composite to compose any other kind of elements, including other compos-
ites. In our application, a composite CardSource can aggregate any kind of
CardSource: instances of Deck, CardSequence, or anything else that imple-
ments CardSource.

e It implements the component interface. This is what allows composite objects to
be treated by the rest of the code in the same way as leaf elements.

The diagram also captures the important insight that, for the ComPOSITE to be
effective, client code should depend primarily on the component type, and not ma-
nipulate concrete types directly.

An example of object graph created through a ComposITE design is illustrated by
the object diagram of Figure 6.3.

Client:

aCardSource= —

deck1:Deck
s1:CompositeCardSource

deck2:Deck

aElements = —

s2:CompositeCardSource

:CardSequence
aElements = —

Fig. 6.3 Object diagram representing a sample composite Cardsource

When applying the ComMPosITE as part of a design, the implementation of the
methods of the component interface will generally involve an iteration through all
the aggregated elements. As a simple example, in the above design, the implemen-
tation of method CompositeCardSource.isEmpty () would be:

public boolean isEmpty () {
for (CardSource source : aElements) {
if (!source.isEmpty()) {
return false;
}
}
return true;

}

In the case of method draw, the behavior is a bit special. Instead of delegating the
method call to all elements, we only need to iterate until we find one card to draw.
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public Card draw() {
assert !isEmpty();
for (CardSource source : aElements) {
if (!source.isEmpty()) {
return source.draw();
}
}
assert false;
return null;

}

Because CompositeCardSource#draw() is an implementation of the interface
CardSource#draw (), it has the same preconditions as the interface method. Thus,
it does not need to deal with the case where a call is made to draw from an empty
card source, even if this is a composite. In the first line of the method, we assert that
!isEmpty (). Here, the call to isEmpty () would be to method isEmpty of class
CompositeCardSource, so the following code could be assumed to always find
a card to draw.! This assumption is further indicated with the assert statement,
which encodes the developer’s assumption that if the precondition is respected,
the execution should not reach this point. The following return null; statement
serves no purpose besides making the code compilable.

When applying the CompoSITE, an important implementation issue to consider is
how to add to the composite the instances of the component that it composes. In our
case, this means that we need a way to specify which cardsource instances form
the elements of a CompositeCardSource. This can be done in two main ways, each
with its strengths and weaknesses.

One way is to provide a method to add elements as part of the composite’s in-
terface. This is the method illustrated in Figure 6.2. In turn, this strategy leads to
a second design question, which is whether to include the add method in the com-
ponent or not. The more common solution is to not include it in the component,
but there may be some situations where it makes more sense to include it on the
interface of the component so that the component and all its children have the same
interface (see Further Reading).

The second way to initialize composite objects is through their constructor. For
example, we could pass a list of card sources as input:

public CompositeCardSource implements CardSource {
private final List<CardSource> aElements;

public CompositeCardSource (List<CardSource> pCardSources) {
aElements = new ArrayList<> (pCardSources);
}
}

Here we use the copy constructor to avoid leaking a reference to the private col-
lection structure (see Section 2.5). Another option would be to use Java’s varargs
mechanism to list each card source individually (see Further Reading):

! This assumes a single-threaded system. Concurrent programming is outside the scope of this
book.
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public CompositeCardSource (CardSource... pCardSources)

The main reason for adopting the “add method” strategy is if we need to modify
the state of the composite at run time. However, this comes at a cost in terms of
design structure and code understandability, because we need to deal with a more
complex life-cycle for the composite object and have to manage the difference be-
tween the interface of the component (which does not have the add method) and
the one of the composite (which does). If run-time modification of the composite is
not necessary, then it is likely a better option to initialize the composite once and
leave it as it is. In the context of the Cardsource example, it would not result in an
immutable composite (we still draw cards), but in other contexts immutability may
be an additional advantage.

Some practical aspects related to using the pattern are independent from the
structure of the pattern itself. These include:

* The location of the creation of the composite in client code;
* The logic required to preserve the integrity of the object graph induced by this
design.

Because these concerns are context-dependent, their solution will depend on the
specific design problem at hand. However, it is important to be aware that simply
creating a well-designed composite class is not sufficient to have a correct appli-
cation of the ComposITE. For example, with the design of Figure 6.2, it could be
possible to write code that results in the object graph of Figure 6.4. However, this
outcome is undesirable, because the shared deck instance between s1 (source 1) and
s2 and the self-reference in s2 would lead to unmanageable behavior.

Client:

aCardSource= —

deck1:Deck

s1:CompositeCardSource

aElements = —

s2:CompositeCardSource

aElements =

Fig. 6.4 Object diagram showing an abused design for a composite cardsource
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6.3 Sequence Diagrams

The use of composition in software design implies design decisions that have to
do with how objects collaborate with each other. This means that the impact of
composition-related design decisions is reflected on how objects end up calling each
other.2 We can contrast this to more static design decisions, which have to do with
how classes depend on each other. For example, an important consequence of the use
of the ComPOSITE for CardSource is that to determine if a CompositeCardSource
is empty, we need to call isEmpty () on some, and possibly all, of its elements.

It can sometimes be helpful to model certain design decisions related to call
sequences. With the UML, this is accomplished through sequence diagrams. Just
like object diagrams and state diagrams, sequence diagrams model the dynamic
perspective on a software system. Like object diagrams and as opposed to state
diagrams, sequence diagrams represent a specific execution of the code. They are the
closest representation to what one would see when stepping through the execution
of the code in a debugger, for example.

To introduce sequence diagrams, and bring home the point that the CoMPOSITE
pattern is really a way to organize how objects interact, Figure 6.5 shows a sequence
diagram that models a call to i sEmpty () on an instance of CompositeCardSource.

:client :CompositeCardSource :Deck :CompositeCardSource :Deck :Deck
isEmpty()
isEmpt
ke--o-- true . ;
isEmpty()
isEmpt, |
o tue , 5
isSEmpty() i
IR false _________. U
. false ... !
. fase |

Fig. 6.5 Sequence diagram for a call to isEmpty () on a CompositeCardSource

Each rectangle at the top of the diagram represents an object. An object in a
sequence diagram is also referred to as an implicit parameter, because it is the ob-

2 Objects calling each other is a linguistic shortcut. The precise, but more cumbersome, phrasing
would be code of a method with a given implicit argument calling methods with other objects as
implicit arguments.
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ject upon which a method is called. Consistently with other UML diagrams that
represent the system at run time, the object names are underlined and follow the
convention name : type as necessary. Here I did not specify a type for the client be-
cause it does not matter, and did not specify a name for any of the other objects
because it does not matter either.

In the diagram, we observe the recursive descent through an instance of Composi-
teCardsource. This information cannot be captured in a class diagram, because the
notation does not support the specification of the behavior of the different methods,
even at an abstract level. This diagram complements the class diagram of Figure 6.2
by showing a dynamic aspect of the design that is invisible on the class diagram.

The dashed vertical line emanating from an object represents the object’s life
line. The life line represents the time (running from top to bottom) when the object
exists, that is, between its creation and the time it is ready to be garbage-collected.
When objects are placed at the top of the diagram, they are assumed to exist at the
beginning of the scenario being modeled. The diagram thus shows an interaction
between a client object and an instance of CompositeCardSource and all of its
component objects. How these objects were created is an example of details left
unspecified by a particular diagram.

When representing the type of an object in a sequence diagram, there is some
flexibility in terms of what type to represent in the object’s type hierarchy. We can
use the concrete type of the object or one of its supertypes. As usual when modeling,
we use what is the most informative. Here, the CompositeCardSource and Deck
objects are represented using their concrete type because the only other option is
CardSource, which makes the information in the diagram less self-explanatory.

Messages between objects typically correspond to method calls. Messages are
represented using a directed arrow from the caller object to the called object. By
called object 1 mean the object that is the implicit parameter of the method call.
Messages are typically labeled with the method that is called, optionally with some
label representing arguments, when useful. When creating a sequence diagram that
represents an execution of Java code, it is likely to be a modeling error if a message
incoming on an object does not correspond to a method of the object’s interface.
Constructor calls are modeled as special messages with the label «create».

Messages between objects induce an activation box, which is the thicker white
box overlaid on the life line. The activation box represents the time when a method
of the corresponding object is on the execution stack (but not necessarily at the top
of the execution stack).

It is also possible to model the return of control out of a method back to the
caller. This is represented with a dashed directed arrow. Return edges are optional.
I use them to aid understanding when there are complex sequences of messages, or
to give a name to the value that is returned to make the rest of the diagram more
self-explanatory. Here, for example, I included return edges to provide the rationale
for subsequent calls in the sequence (given that the execution terminates as soon as
isEmpty () returns false).

To explore some of the additional modeling features of sequence diagrams and
their potential, let us model the use of an iterator in the ITERATOR pattern (see Sec-
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tion 3.6). Figure 6.6 shows the class diagram of the specific application of ITERATOR
I later model with a sequence diagram.

«interface» «interface»
Iterator<Card> Iterable<Card> Card
hasNext():boolean iterator():Iterator<Card>
next():Card ~ *
1
Deck
Client  [------> draw():Card K>—{ CardStack
shuffle():void
iterator():Iterator<Card>

Fig. 6.6 Class diagram of the iterable peck

This diagram shows a version of the Deck class that relies on a user-defined type
CardStack to store cards. Both the Deck and the cardstack are iterable. The client
code, represented as class Client, can refer to instances of class Deck as well as the
iterators they return.

Let us look at what happens when the client code makes a call to Deck#itera-
tor (). Figure 6.7 is the sequence diagram that models a specific execution of
Deck#iterator () within client code. The names of model elements are provided
as notes on the diagram.

The iterator () message to a Deck instance leads to the call being delegated
to the cardstack instance. The Cardstack instance is responsible for creating the
iterator. It is also possible to show the creation of an instance by placing it lower
in the diagram, as in the case here for the rterator object. The label iterator is
used on the return edge from both iterator () calls to show (indirectly) that it is
the same object being propagated back to the client. In this diagram I also included
a return edge from the next () method and labeled it nextCard to show that the
returned object is the one being supplied to the subsequent self-call (a method called
on an object from within a method already executing with this object as implicit
parameter).

In terms of representing types, here the Deck object is represented using its con-
crete type, but the label deck: Iterable<Card> would have been a valid option as
well. For the Iterator object I used the interface supertype because in practice the
concrete type of this object is anonymous and, as such, it does not matter.

The distinction between models and complete source code applies to sequence
diagrams as well. First, a sequence diagram models a specific execution, not all exe-
cutions. In the above example, a different execution could have received false from
hasNext () and not called next (), or called next () twice, etc. These options are
not represented, because they are different scenarios. Second, sequence diagrams
will naturally omit some details of the execution of the code. We use sequence di-
agrams to show how objects interact to convey a specific idea. Although the UML
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. Object
client: Deck: :CardStack |[----1 T
D —_— —_ (implicit parameter)
iterator() 3 i Constructor call
l’. iterator() :

Message
(method call)

«create»

:Iterator<Card>

... terator D
iterator !
iterator < L] Lifeline ;
1 hasNext() 1

showCard(nextCard) .
Method return
Self-call

5

Fig. 6.7 Sequence diagram of an iteration through a peck object

supports the specification of looping and conditional statements within a method,
these are typically not included in UML sketches and I do not use this notation in
the book. Asynchronous calls (which are shown using a half arrow head), are also
not covered. Insignificant calls (e.g., to library methods) are typically omitted from
sequence diagrams in sketches.

6.4 The DECORATOR Design Pattern

In some cases we would like to have objects of a given type to exhibit special be-
havior, or have certain extra features. In the example of a cardsource, we could
imagine that in some cases we might want to print a description of each card drawn
on the console or in a file (a process called logging). As another example, we might
want to keep a reference to every card drawn from a certain source (i.e., memorizing
the drawn cards). One strategy for meeting this requirement is to enhance the static
structure of the design to accommodate the new features. In other words, we can
provide additional functionality by writing more classes that have that functionality.
Let us consider two possible design solutions for doing this.

Our first solution, which I will call the specialized class solution, will be to de-
sign one class for each type of feature we want to support. For example, to have
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a CardSource that logs cards drawn, we could define our own special version of
Deck:

public class LoggingDeck implements CardSource {
private final CardStack aCards =

public Card draw () {
Card card = aCards.pop();
System.out.println(card);
return card;

}

public boolean isEmpty () {
return aCards.isEmpty();
}
}

Similarly, to have a version of Deck that remembers the cards drawn, we could
create a new class MemorizingDeck that stores a reference to every drawn card in a
separate structure. Although a strategy that relies on the static structure could work
in simple cases, it has several drawbacks.

The main drawback of the specialized class idea is that it offers no flexibility for
toggling features on and off at run time. In other words, it is not easily possible to
turn a normal deck into a “memorizing” deck, or to start logging the cards drawn
at some arbitrary point in the execution of the code. In Java, it is not possible to
change the type of an object at run time, so the only option would be to initialize
a new object and copy the state of the old object into a new object which has the
desired features. Such a scheme is not very elegant. However, turning features on or
off might be necessary if the user interface allows the player to turn these features
on or off during game play.

We can consider a second solution that can accommodate run-time adjustments
in the features of an object. I will call this solution the multi-mode class solution.
With this solution, we provide all possible features within one class, and include
a flag value to represent the mode the object of the class is in. The resulting code
would look like this:

public class MultiModeDeck implements CardSource {
enum Mode {
SIMPLE, LOGGING, MEMORIZING, LOGGING_MEMORIZING
}
private Mode aMode = Mode.SIMPLE;

public void setMode (Mode pMode) { /* ... #*/ }

public Card draw () {
if (aMode == Mode.SIMPLE) { /% ... %/}
else if (aMode == Mode.LOGGING) { /% ... %/}
VE V4
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Although the multi-mode class solution does allow one to toggle features on and
off at run time, it contravenes the important principles presented in Chapter 4 by
inducing elaborate state spaces for objects that should otherwise be fairly simple.
It also violates the principle of separation of concerns by tangling the behavior of
different features within one class, or even a single method. In the extreme, it can
turn a class intended to represent a simple concept into a Gob CLASST. As a conse-
quence of its complexity, the multi-mode class solution also suffers from a lack of
extensibility. To add a new feature, we need to add yet more code and branching
behavior to account for new modes. With, say, ten features, we can imagine how
the code would become a nightmarish case of SWITCH STATEMENTT. As is often the
case in the presence of a potential combinatorial explosion, the key is to move from
a solution that relies on defining new classes to a solution that relies on combining
objects.

The DECorATOR design pattern offers just that solution. The context for using the
pattern is when we want to decorate some objects with additional features, while
being able to treat the decorated objects like any other object of the undecorated
type. Figure 6.8 shows an application of the solution template of DECORATOR to the
Cardsource scenario. The diagram shows the roles played by different elements as
notes.

Component

aElement 1 «interface» 1 aElement
LoggingDecorator K>———— cCardSource [——<> MemorizingDecorator

LoggingDecorator(CardSource) draw():Card MemorizingDecorator(CardSource)
y isEmpty():boolean T

Decorator Leaf Leaf Decorator
| Deck CardSequence [

Fig. 6.8 A sample application of DECORATOR

In terms of solution template, the DEcorATOR looks very much like the Compos-
ITE, except that instead of a composite class we have some decorator classes. Indeed,
the design constraints of the decorator class are similar as those of the composite
class:

* A decorator aggregates one object of the component interface type (CardSource
in the example). Using the component interface type is important, as it allows the
decorator to decorate any other kind of components, including other decorators
(and composites).

» It implements the component interface. This is what allows decorator objects to
be treated by the rest of the code in the same way as leaf elements.
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The main question to resolve when applying the DEcOrRATOR is what the methods
of the decorator class should do. In a classic use of the DEcoraTOR, the implemen-
tation of the interface’s methods that implement the decoration involves two steps,
illustrated in the code below:

public class MemorizingDecorator implements CardSource {
private final CardSource aElement;
private final List<Card> aDrawnCards = new ArrayList<>();

public MemorizingDecorator (CardSource pCardSource) {
aElement = pCardSource;

}

public boolean isEmpty () {
return aElement.isEmpty();

}

public Card draw () {
// 1. Delegate the original request to the decorated object
Card card = aElement.draw();
// 2. Implement the decoration
aDrawnCards.add (card) ;
return card;

One step is to delegate the execution of the original behavior to the element being
decorated. In our case, we call draw () on the original card source (the one being
decorated). The other step is to implement the “decoration”, which in our case is to
add the card to some internal structure. There is no prescribed order for these two
steps, although in some case the problem domain may impose an order. In our case,
it is necessary to draw a card before we can add it to the internal storage. Finally,
although only some methods may involve a behavioral decoration, it is necessary
to re-route all methods declared in the component interface to respect the subtyping
contract. In our case, this means that we have to implement a method isEmpty ()
that simply returns whether the decorated element is empty.

With the DEcorATOR, we can easily combine decorations. Because a decora-
tor aggregates a component, combining features becomes as simple as decorat-
ing a decorated object. The sequence diagram of Figure 6.9 illustrates the del-
egation sequence when using a DEcoraTOR where we decorated a Deck with a
MemorizingDecorator,andthenAagahl“dﬂla LoggingDecorator, so that the fi-
nal behavior of draw () will be to memorize, log, and return the next card in the card
source.

An important constraint when using the DECORATOR 1is that for the design to work,
decorations must be independent and strictly additive. The main benefit of the Dtc-
ORATOR is to support attaching features in a flexible way, sometimes in unanticipated
configurations. For this reason, use of the pattern should not require client code to
respect elaborate combination rules. As for being additive, this means that the DEc-
ORATOR pattern should not be used to remove features from objects. The main reason
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client: :LoggingDecorator :MemorizingDecorator :Deck
draw()
draw()
draw|

lo...card

Fig. 6.9 Sequence diagram modeling a call to draw on a decorated Deck

for this constraint is that it would violate a fundamental principle of object-oriented
design introduced in Chapter 7.

When implementing the DECORATOR design pattern in Java, it is a good idea to
specify as final the field that stores a reference to the decorated object, and to
initialize it in the constructor. A common expectation when using the DECORATOR is
that a decorator object will decorate the same object throughout its lifetime.

Finally, an important consequence of decorating objects using the DECORATOR is
that decorated objects gain a different identity. In other words, because a decorator
is itself an object that wraps another object, a decorated object is not the same as
the undecorated object. Figure 6.10 illustrates this change in identity for a simple
CardSource decoration. In this diagram, we see that the client code holds a refer-
ence to a Deck instance we call deck in a variable sourcel, and a reference to a
decorated version of deck in source2. Although sourcel and source2 concep-
tually refer to the same card source, the decorated version does not have the same
identity as the undecorated version. In other words, sourcel != source2. This
issue of identity change could be a problem in a system where object comparison
relies on identity instead of equality. In this case, introducing the DECORATOR pattern
could break the design. See Section 4.6 to review the implications of object identity.

client:
sourcel = deck:Deck
source2 = —
\ :LoggingDecorator

aElement = —

Fig. 6.10 Object diagram of a decorated beck



142 6 Composition

6.5 Combining COMPOSITE and DECORATOR

Although the DEcoraTOR and COMPOSITE patterns are distinct, decorator and com-
posite classes can easily co-exist in a type hierarchy. If they implement the same
component interface, they can work hand-in-hand in supporting composition-based
solutions to design problems. The class diagram of Figure 6.11 shows a type hierar-
chy with one leaf, one composite, and two decorators.

CompositeCardSource

<f*:%

«interface» 1

1
K>——— CardSource [——<>

LoggingDecorator ------ > K MemorizingDecorator
draw():Card
isEmpty():boolean

A

Deck

Fig. 6.11 Combining the ComposiTe and DECORATOR in the same class hierarchy

The diagram of Figure 6.12 shows a sample object graph that can be induced by
this type hierarchy. The diagram shows examples of both a decorated composite and
a composite of a decorated object.

:Deck

client: :LoggingDecorator :CompositeCardSource

source = —/’ aElement = —/ aElements = —

:MemorizingDecorator

/ :Deck
aElement = —

Fig. 6.12 Object diagram showing a combination of composite and decorator objects

Although, in this chapter, I developed the running example of various design
options for a card game, it is good to know about the classic scenario supported by
the ComposiTE and DECORATOR patterns. A design context that is a particularly good
fit for these patterns is the development of some drawing feature (e.g., for a drawing
tool or slideshow presentation application). In this scenario, the component type is a
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Figure with a draw () method. Leaf classes are concrete figures, such as rectangles,
ellipses, text boxes, etc. Figure 6.13 shows a class diagram of the domain elements
and corresponding design structures.

Drawing
CompositeFigure «interface»
* Figure 1 BorderDecorator
add(Figure):void ~ [-2°- > I
remove(Figure):void - draw():void | BorderDecorator(Figure)
>
Rectangle Ellipse

Fig. 6.13 The ComposiTE and DEcorAToR patterns applied to the context of a drawing editor

In this design, the CompositeFigure very naturally supports the end-user feature
of grouping figures into an aggregate figure. A group can then be considered a single
figure element, which can then be grouped with other figures and groups, etc. As for
the DECORATOR, it allows decorating figures, literally. The example provided on the
diagram is that of a decorator that adds a border to the decorated figure, whatever
it is. This classic application of the ComPoSITE and DECORATOR patterns is good to
know about, because they also provide the conceptually cleanest illustration of the
behavior that must be realized by their implementation of the component interface.
Specifically, the draw () method of the composite is simply an invocation of the
draw () method of all the figures it contains:

public void draw() {
for (Figure figure : aFigures) {
figure.draw();

}

For the DECORATOR, the implementation of the draw method would be a sequence
of one delegation followed by a decoration.
public void draw() {

aFigure.draw () ;
// Additional code to draw the border
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6.6 Polymorphic Copying

We are now starting to work with designs that involve various combinations of ob-
jects in elaborate object graphs. The use of such dynamic structures has various
implications for other aspects of the design. One implication is for object identity
(see Section 6.4). Another implication is for designs that rely on object copying.

In Section 2.7, I discussed situations where it is useful to copy some objects,
and introduced copy constructors, which allow a client to make a copy of an object
passed as argument:

Deck deckCopy = new Deck (deck) ;

Copy constructors work fine in many situations, but their main limitation is that
a constructor call requires a static reference to a specific class (here, class Deck).
In designs that make use of polymorphism, this can turn out to be a problem. Let
us consider a situation where we are managing a list of CardSource objects. If we
want to make a deep copy of the list, we would have to make a copy of every card
source in the list:

List<CardSource> sources = ...;
List<CardSource> copy = new ArrayList<>();
for (CardSource source : sources) {

copy.add (/* 2?2?2? x/);
}

Because cardsource is an interface type that must be subtyped and we do not
necessarily know the concrete types of the objects in the list sources, we do not
know what copy constructor to call. One clumsy solution would be to use a branch-
ing statement such as this:

CardSource copy = null;

if (source.getClass () == Deck.class) {
copy = new Deck ((Deck) source);
} else if (source.getClass () == CardSequence.class) {
copy = new CardSequence ( (CardSequence) source);
} else if (source.getClass () == CompositeCardSource.class) {

copy = new CompositeCardSource ((CompositeCardSource) source);
}
Jx e x/

Solutions of this nature are not recommended because they essentially void the ben-
efits of polymorphism, namely, to be able to work with instances of CardSource
no matter what their concrete type is. Moreover, this code is also an example of
SWITCH STATEMENT{ Which destroys the extensibility of the design, as it would break
as soon as a new subtype of CardSource is introduced. Finally, it can be a mess
to implement because some CardSource classes are wrappers around other card
sources. Specifically, because CompositeCardSource can aggregate any kind of
card source, a copy constructor for this class would also need a branching statement
like the above. In the presence of polymorphism, the use of copy constructors is
essentially unworkable.
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Instead, what we need is a mechanism that provides us with polymorphic copy-
ing of objects. Specifically, we want to be able to make copies of objects without
knowing the concrete type of the object. 3

As usual, to support polymorphic behavior in a design, we need to provide a
specification of this behavior. This is no different for copying objects, and for this
purpose we will add a method copy () to our CardSource interface:

public interface CardSource {

VR V4

J kA
* @return An object that is an exact deep copy
* (distinct object graph) of this card source.
*/

CardSource copy();

The impact of this addition is that all concrete subtypes of CardSource are now
required to supply a copy () operation. Figure 6.14 presents some of the different
cases we have seen so far in previous sections, with their elements that are relevant
to copying. In this design, we will assume that the Deck class is implemented using
the class cardstack introduced in Section 6.1. In this scenario, CardStack also has
a copy constructor.

CompositeCardSource

CompositeCardSource(CardSource...)
copy(): CardSource

MemorizingDecorator «interface» L inaD .
1 CardSource 1 oggingDecorator
aDrawnCards: List<Card> K>— -
----- > draw(): Card K3-----1 LoggingDecorator(CardSource)
MemorizingDecorator(CardSource) isEmpty(): boolean copy(): CardSource
copy(): CardSource copy(): CardSource
o
Deck 1 CardStack
copy(): CardSource CardStack(CardStack)

Fig. 6.14 Polymorphic copy requires all implementing classes of a type to supply a copy () oper-
ation

Implementing copy () for non-recursive structures is straightforward. In our
case, class Deck is the only non-recursive structure in the design context, so we
start with this class:

3 Polymorphic copying is also known as cloning. However, in Java, cloning also refers to a specific
way to implement polymorphic copying using the library method object#clone (). Cloning with
Object#clone () is mainly relevant in the presence of inheritance, and is covered in Chapter 7.
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public class Deck implements CardSource {
private CardStack aCards = new CardStack();
V2 IR V4
public Deck copy () {
Deck copy = new Deck();
copy.aCards = new CardStack (aCards) ;
return copy;

Because the state of Deck is entirely encapsulated by its aggregated cardstack,
copying the deck amounts to copying its inner CardStack structure. In the example,
this is done with the help of the cardstack copy constructor. Because a Cardstack
only aggregates immutable card objects, the copying can stop there.

One noteworthy aspect of this implementation of copy () is that its return type
iS Deck, not cardSource. This feature, introduced in Java 5, is called a covariant
return type. This means that the return type of an implementing method can be more
specific than the return type of the corresponding interface method it implements.
This is a type-safe way to avoid unnecessary downcasts. In contexts where we are
directly copying an object of the subtype, we can assign the result to a variable of
the subtype.

Deck deck = new Deck{();

// Without covariant return type
CardSource copyl = deck.copy();
Deck copy2 = (Deck) deck.copy();

// With covariant return type
Deck copy3 = deck.copy();

Without a covariant return type, if we wish to make a copy of an object stored in
a variable of type Deck, we either have to store the result in a variable of the more
general type CardSource (as for copy1l), or use a downcast (as for copy2). With
the covariant return type, we can assign a copy of deck to a variable of type Deck
without the downcast (as for copy3).

For copying recursive structures, we have the additional problem of ensuring that
we actually do a recursive copy. Let us start with LoggingDecorator, the simpler
of the two decorators:

public class LoggingDecorator implements CardSource {
private CardSource aSource;

public LoggingDecorator (CardSource pSource) {
asSource = pSource;

}

V2 Y4

public LoggingDecorator copy () {
return new LoggingDecorator (aSource.copy());

}
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In the case of a decorator, our copy consists of a new decorator of a copy of the
original decorated element. However, because decorators can decorate any subtype
of cardsource, we must copy the decorated element polymorphically. Fortunately,
the support we need to do this is precisely the one we are implementing throughout
the cardsource type hierarchy: method copy (). The implementation of copy ()
for MemorizingDecorator is very similar, except that we also have to copy the
additional state (aDrawnCards):

public MemorizingDecorator copy () {
MemorizingDecorator copy =
new MemorizingDecorator (aElement.copy());
copy.aDrawnCards = new ArrayList<>(aDrawnCards);

return copy;

}

Implementing the copy operation for CompositeCardSource is similar. In this
case, our copy needs a list of copies of all the cardsource instances in the compos-
ite:

public CardSource copy () {
CompositeCardSource copy = new CompositeCardSource();
for (CardSource source : aElements) {
copy.aElements.add (source.copy());

}

return copy;

}

6.7 The PROTOTYPE Design Pattern

The ability to copy objects polymorphically, as seen in the previous section, is a
powerful feature that can be used for a variety of purposes in composition-based
designs. One specialized use of polymorphic copying is to support polymorphic
instantiation. Let us consider a simplified model for a card game where, for every
new game, we need to instantiate a fresh Cardsource:

public class GameModel {
private CardSource aCardSource;

public void newGame () {
aCardSource = /* Instantiate a new CardSource #*/;
}
}

The implementation of newGame () can be trivial if we hard-code the specific type
of source to return (for example, new Deck ()). However, what if we want to
make it possible to configure GameModel so that it is possible to use any type of
CardSource, and to change the default card source at run time? In this case, the
problems are similar to the ones discussed in the previous section (that the use of a
SWITCH STATEMENTT structure destroys the benefits of polymorphism, etc.).
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To create a card source without hard-coding its type, one option could be to
use metaprogramming (see Section 5.4). For example, we could add a parameter to
newGame () of type Class<T>, which specifies the type of the card source to add.
Although workable, solutions of this nature tend to be fragile and require a lot of
error handling.

Another option is to rely on a polymorphic copying mechanism and create new
instances of an object of interest by copying a prototype object. This idea is captured
as the ProToTYPE design pattern. The context for using the PROTOTYPE is the need to
create objects whose type may not be known at compile time. The solution template
involves storing a reference to a prototype object and polymorphically copying this
object whenever new instances are required.

For the GameModel scenario, the application of the ProToTYPE would look like
this:
public class GameModel {

private final CardSource aCardSourcePrototype;
private CardSource aCardSource;

public GameModel (CardSource pCardSourcePrototype) {
aCardSourcePrototype = pCardSourcePrototype;

newGamne () ;
}
public void newGame () {
aCardSource = aCardSourcePrototype.copy();

}

«interface»

aCardSourcePrototype 1 CardSource Prototype
GameModel <>—"7 — 1 1777
copy():CardSource

Client j : 5
Product
..... Deck CardSequence

Fig. 6.15 Sample application of the ProtoTYPE, With the name of roles indicated in notes

In this solution, we use dependency injection (see Section 3.8) to inject a card
source prototype object into the GameModel via its constructor. Then, whenever a
fresh cardsource object is required, we make a copy of the prototype and assign
the result to acardsource. If need be, it would also be possible to add a setter
method to change the prototype at run time.

Figure 6.15 shows a class diagram that summarizes the key aspects of the solu-
tion template, and indicates the role various elements play in the application of the
pattern. The client is any code that needs to perform polymorphic instantiation. The
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prototype is the abstract element (typically an interface) whose concrete prototype
must be instantiated at run time. The products are the objects that can be created by
copying the prototype.

Code Exploration: JetUML - DiagramTabToolBar
Applying the PROTOTYPE pattern.

The design of the JetUML tool bar relies on the PROTOTYPE to create new
nodes in a diagram. The DiagramTabToolBar class aggregates a number of
SelectableToolButton instances. In turn, these instances aggregate an in-
stance of the Node to create when the button is clicked. When the user presses
a mouse button on the canvas, the code asks the tool bar to return the prototype
associated with the button, and copies it to create the new node. Figure 6.16
shows the main participants in this interaction.

user: :DiagramCanvasController :DiagramTabToolBar optional: diagramElement:
click mouse

mousePressed(...)
handleSingleClick(...)

handleNodeCreation(...)
getCreationPrototype()

Fig. 6.16 Use of the ProToTYPE in JetUML
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6.8 The COMMAND Design Pattern

Conceptually, a command is a piece of code that exercises a cohesive action: saving
a file, drawing a card from a deck, etc. The way to represent a command in source
code naturally aligns with the concept of a function or method, since that is an
abstraction that corresponds to a piece of code that will execute. As an example, we
can consider the two main state-changing functionalities of a Deck class: to draw a
card, and to shuffle the cards. To exercise these features, we call methods:

deck.shuffle();
Card card = deck.draw();

Now that we are studying designs that make principled use of objects, we con-
sider an alternative idea for representing commands, namely for objects to serve as
manageable units of functionality. In sophisticated applications, there are many dif-
ferent contexts in which we might want to exercise a functionality such as drawing
a card from the deck. For example, we might want to store a history of completed
commands, so that we can undo them or replay them later. Or, we might want to
accumulate commands and execute them all at once, in batch mode. Or, we might
want to parameterize other objects, such as graphical user interface menus, with
commands. Requirements such as these point to the additional need to manage func-
tionality in a principled way. The CommAND design pattern provides a recognizable
way to manage abstractions that represent commands.

The class diagram of Figure 6.17 shows a sample application of the pattern. The
Command interface defines an execute method and other methods to specify the ser-
vices required by the clients to manage the commands. In the example, this includes
an additional undo () method, but other designs may leave it out or have other re-
quired services (such as description (), to get a description of the command).

Fig. 6.17 Application of the

ComMAND design pattern with dinterface» Abstract
the name of element roles in Client  F------3 Command | .-l command
notes execute():void
undo():void
JAN

Concrete
|» 77777 DrawCommand ShufflecCommand
command

The CommaND pattern has a simple solution template. The template involves
defining commands as objects, with an interface for commands that includes a
method to execute the command. Another important part of the solution template
is for the client to refer to commands through the interface. Despite the apparent
simplicity of the solution template, the COMMAND pattern is not necessarily an easy
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one to apply, because many important design choices induced by the pattern are
implementation-dependent. Let us look at some examples from our scenario.

e Access to command target: Executing a command will normally require to
query, and possibly modify, the state of one of more objects. For example, draw-
ing a card from a deck changes the state of the deck. The design must specify
how the command gains access to the objects it must act on. Typically this is
done by storing a reference to the target within the command object, but other
alternatives are possible, including passing arguments to the execute method or
using closures;

* Data flow: In the typical solution template for Commanb, the interface methods
have return type void. The design must thus include a provision for returning the
result of commands that produce an output, such as drawing a card from a deck;

* Command execution correctness: The code responsible for executing com-
mands must ensure that the sequence of execution is correct. For example, the
design needs to specify whether commands can be executed more than once. The
use of design by contract also leads to interesting implications. If commands call
code with specified preconditions, the responsibility of respecting the precondi-
tions is transferred to the code executing the command.

¢ Encapsulation of target objects: In some cases, a command object might re-
quire operations that are not available in the target object’s public interface. For
example, to undo the effect of calling beck.draw (), it is necessary to push a
card back onto the deck. In our running example, class Deck does not have a
push method. The design must include a solution to this issue. One possibility
is to have a command factory method located in the class of the object the com-
mands operate on. In our case, this would mean to add a createDrawCommand ()
method in class Deck.

¢ Storing data: Some operations supported by commands require storing data,
something that also needs to be designed as part of applying the pattern. For ex-
ample, in a design context where the undoing of commands is required, the state
before executing a command may have to be cached so that it can be restored. In
our case, to undo the drawing of a card from a deck, it is necessary to remember
which card was drawn. This information could be stored in the command object
directly, or in an external structure accessible by the command object.

To illustrate one point in the design space for each of the concerns above, the
code below shows an example of how to support a command to draw cards from a
deck. The key idea for this application of the pattern is to use a factory method to
create commands that are instances of an anonymous class with access to fields of
its outer instance (see Section 4.9). In this design, commands to operate on a Deck
instance are obtained directly from the pDeck instance of interest. The challenge in
this scenario is to make it possible to obtain a reference to the card that was drawn
from the deck as a result of the command. As usual, various solutions are possible.
For the sake of illustration, I assume that we chose to extend the interface and im-
plementation of class Deck to include a field aLastDrawn of type Optional<Card>
that stores the last card that was drawn from the deck.
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public class Deck implements CardSource, Iterable<Card> {
private CardStack aCards = new CardStack();
private Optional<Card> alastDrawn = Optional.empty();
Sk e */
public Command createDrawCommand () {
return new Command () {
Optional<Card> aPreviousLastDrawn = Optional.empty();

public void execute() {
aPreviousLastDrawn = alLastDrawn;
draw () ;

}

public void undo () {
aCards.push (alastDrawn.get ());
alastDrawn = aPreviousLastDrawn;

}i
}

With this code, a new draw command is created, executed, and undone as follows:

Deck deck = new Deck();

Command command = deck.createDrawCommand () ;
command.execute () ;

Card drawn = deck.lastDrawn () ;
command.undo () ;

When command.execute () executes, the code in the anonymous class stores the
value of the last drawn card before the command is executed. Within the code of the
anonymous class, the symbol aLastDrawn is a short form for Deck.this.aLast-
Drawn, namely, the corresponding field of the outer instance. Then the code of the
execute () method simply delegates the call to method draw (), whose target ob-
ject is also the outer instance of type Deck. When a call to undo () is received by
the command object, it can simply push the deck’s last drawn card back onto the
top of the underlying cardstack. However, to properly undo the command’s exe-
cution it is also necessary to restore the state of the aLastDrawn field, which is done
by assigning the value stored in aPreviousLastDrawn to the field. This code also
assumes that commands are properly managed by the client code, which includes
undoing commands in the inverse order of that in which they were executed.

Independently of the specific way the pattern is applied, having command objects
gives us much flexibility for managing how and when to execute the commands that
control a software system.

Code Exploration: Solitaire - Move
Applying the COMMAND pattern using inner classes.

The Solitaire example application relies on the CommanD pattern. The com-
mand role is taken up by the Move interface. The implementations of Move il-
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lustrate a diversity of ways that commands can be realized. Classes CardMove
and RevealTopMove are private inner classes of GameModel so that they can
refer to the private fields and methods of their outer instance, as discussed
in Section 4.9. The command to represent discarding a card from the deck is
very simple and thus implemented as an anonymous class instantiated as part
of the initialization of a field aDiscardMove. An alternative option would
have been to create new instances of a discard move in a factory method. To
me both options are almost equivalent in terms of design quality. Because it
does not refer to the state of a GameMode1, field NULL_MOVE is a constant and
declared as static. The null move represents the situation where it is not pos-
sible to make a move in the game. This is an application of NULL OBJECT (see
Section 4.4). Class CompositeMove realizes the role of the composite in the
CoMmPpoOSITE pattern. In the game it is used to combine atomic moves, such as
taking a card from a tableau pile and flipping the card underneath it to re-
veal it. Finally, one implementation of Move is a stub, used for testing (see
Section 5.8).

Code Exploration: JetUML - DiagramOperation
Combining the COMMAND and the COMPOSITE patterns.

In JetUML, DiagramOperation fulfills the role of command. However, in
this design, there are only two concrete command types: SimpleOperation
and CompoundOperation. SimpleOperation is a wrapper for a function ob-
ject that can be used to encapsulate any non-compound command using a
functional-programming flavored design. I revisit this style in Chapter 9. In
contrast, CompoundOperation is a typical implementation of a composite in
the CoMPOSITE pattern.
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When designing a piece of software using aggregation, one can often end up with
long delegation chains between objects. For example, Figure 6.18 models the ag-

gregation for card piles in the Solitaire application.

aFoundations 1 aPiles 4 aCards 1
K>———— K>———

GameModel K>————— Foundations CardStack List<Card>

Fig. 6.18 Aggregation structure for foundation piles in Solitaire
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In this design, a GameModel object holds a reference to an instance of Founda-
tions to manage the four piles of cards of a single suit. In turn, an instance of
Foundations holds references to four cardstack instances, which are specialized
wrappers around List objects.

There are different ways to use such delegation chains. Figure 6.19 illustrates a
hypothetical way to use the aggregation structure for adding a card to a pile.

client: :GameModel :Foundations firstPile:CardStack cards:List<Card>

addCard(card,FIRST.

getPile(FIRST

. frstlile 1
getGards()

add(card)

e — U

Fig. 6.19 Sample data structure access scenario for the Solitaire game design

In this design, the GameModel is in charge of all the details of adding a card to
a pile, and must handle every intermediate object in the delegation chain. As an
example, in this design the implementation of addCard in class GameModel would
look like this:

aFoundations.getPile (FIRST) .getCards () .add (pCard) ;

This design violates the principle of information hiding by requiring the code
of the GameModel class to depend on (i.e., know about) the specific way required
to navigate the different nested structures necessary to add a card to the system.
The intuition that designs such as this one tend to be suboptimal is captured by the
MESSAGE CHAINT antipattern. The Law of Demeter is a design principle intended to
help avoid the consequences of MEssAGE CHAINT. This principle states that the code
of a method should only access:

* The instance variables of its implicit parameter;
e The arguments passed to the method;

* Any new object created within the method;

e (If need be) globally available objects.

To respect this principle, it is necessary to provide additional services in classes
that occupy an intermediate position in an aggregation/delegation chain so that the
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clients do not need to manipulate the internal objects encapsulated by these objects.
The solution in our example would be illustrated by Figure 6.20.

client: :GameModel :Foundations firstPile:CardStack cards:List<Card>

addCard(card,FIRST.

addCard(card,FIRST)

getPile(FIRST) |

ush(card

add(card)

Fig. 6.20 Sample data structure access scenario for the Solitaire game design, which respects the
Law of Demeter

In this solution, objects do not return references to their internal structure, but
instead provide the complete service required by the client at each step in the dele-
gation chain.

Code Exploration: Solitaire - GameModel
Widening a class’s interface to respect the Law of Demeter.

A study of the GameModel class will reveal numerous situations where I
widened the interface of the class to respect the Law of Demeter. For example,
method isvisibleInTableau has the single statement:

return aTableau.contains (pCard) && aTableau.isVisible (pCard) ;

As an alternative design, it would have been possible to return the tableau to
the client (with something like getTableau () ), and let the client code imple-
ment the logic directly as:

if (model.getTableau() .contains (pCard) &&
model.getTableau () .isVisible (pCard))

However, this would require the client to know about the interface of Tableau,
which violates the Law of Demeter.
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Insights

This chapter presented various techniques for solving design problems by compos-
ing objects according to specific patterns.

* Large classes can be simplified by introducing classes whose objects will provide
services to the initial class;

e If a design problem requires structures that change at run time or can be com-
bined, consider building the structures by combining objects, as opposed to defin-
ing new classes for each possible structure;

» Use the ComposITE when you need to manipulate collections of objects the same
way as single (leaf) objects;

e Use the DEcoraTOR When you need to add functionality to certain objects, while
being able to use them in place of regular objects;

* The ComprosITE and DECORATOR can be combined easily if they share the same
component type;

* Applying well-known object composition patterns is not sufficient to ensure the
code is correct: client code remains responsible for ensuring that the use of a
pattern does not result in a defective object graph;

* Sequence diagrams can help communicate important arrangements of method
calls between objects in a design;

» Use polymorphic copying to make copies of objects whose concrete type is not
known at compile time. If the type is known at compile time, favor the simpler
technique of copy constructors;

* Polymorphic copying can also be used as a way to create fresh instances of ob-
jects whose type is not known at compile time, a technique captured by the Pro-
TOTYPE pattern;

» For designs where function objects need to be explicitly managed by client code,
for example to store them or share them between code locations, the COMMAND
design pattern provides a recognizable solution template;

*  When applying the CommAND pattern, be careful not to break the encapsulation
of classes simply to allow command objects to operate on target objects;

» Unless there is an explicit reason not to, respect the Law of Demeter and avoid
long message chains.

Further Reading

The Gang of Four book [7] has the original treatment of the COMPOSITE, DECORATOR,
PROTOTYPE, and COMMAND patterns. Their descriptions of the patterns include useful
complementary discussions of the implications of using the pattern. Information
on variable arguments (varargs) can be found on the Oracle website in the list of
enhancements for Java SE 5.0. A web page with information on the Law of Demeter
can be found at http://www.ccs.neu.edu/home/lieber/LoD.html.
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Chapter 7
Inheritance

Concepts and Principles: Abstract class, abstract method, cloning, final
class, final method, inheritance, Liskov Substitution Principle, overload-
ing, overriding;

Patterns and Antipatterns: TEMPLATE METHOD.

Inheritance is a programming language mechanism that allows us to create objects
from definitions provided in multiple, inter-related classes. It is a powerful feature
that offers a natural solution to many design problems related to code reuse and ex-
tensibility. At the same time, it is a complex mechanism that can easily be misused.
This chapter provides a review of inheritance and presents the major design rules
and patterns involving it.

Design Context

The examples in this chapter discuss the design of two type hierarchies: card sources
and game moves. The card source hierarchy follows the examples of the previous
chapters where instances of objects that are subtypes of a Cardsource interface are
used to provide card instances to be used in card games. The second context is the
design of a hierarchy of subtypes of an interface Move which, together, realize an
application of the CoMMAND design pattern as seen in Section 6.8.

7.1 The Case for Inheritance

So far we have seen many situations where we can leverage polymorphism to re-
alize various design features. Polymorphism helps make a design extensible by de-
coupling client code from the concrete implementation of a required functionality.
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The class diagram of Figure 7.1 exemplifies this benefit by showing a GameModel
that depends only on a general cardSource service whose concrete realization can
be one of at least three options: a typical Deck of cards, a MemorizingDeck that
remembers each card drawn, and a CircularDeck that places drawn cards back at
the bottom of the deck.

«interface»
CardSource

GameModel K>—

draw():Card
isEmpty():boolean

Deck MemorizingDeck CircularDeck

Fig. 7.1 Polymorphic reference to a cardsource service

This design is extensible because the GameModel can work with any card source.
As discussed in Chapter 3, polymorphism relies intrinsically on the language’s sub-
typing mechanism. The key to supporting various options for a CardSource is the
fact that the different concrete implementations of the service are subtypes of the
CardSouce interface type.

Although the design illustrated is clean from the point of view of polymorphism,
it has one major weakness from the point of view of the implementation of the var-
ious card source alternatives. This weakness would become apparent as soon as we
would start to implement the class hierarchy of Figure 7.1. The issue is that the
services defined by the cardsource interface are similar, and likely to be imple-
mented in similar ways.! Figure 7.2 shows a slightly different variant of the class
diagram that emphasizes the implementation of the concrete Cardsource subtypes
instead of the polymorphism. As is now more evident from the diagram, all three
implementations of CardSource aggregate a CardsStack element. Moreover, in all
cases:

 the implementation of method i sEmpty () is a delegation to aCards.isEmpty ();

* the implementation of method draw () pops a card from aCards: the only dif-
ference between the three options is small variants for the remainder of the im-
plementation of draw (e.g., to insert the card in the deck in the cardstack of
CircularDeck).

So here we can say that the design induces DuPLICATED CODET, also known as
code clones. There is an extensive literature on the topic of duplicated code, but the
bottom line is that it is a good idea to avoid it.

! This assumes a standard implementation, and not an application of the DEcoraTor, which would
be challenging in the case of circularDeck because of the requirement to use a service (adding
cards to the source) that is not defined on the component interface.
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FEEEE Deck K>—
i aCards
«interface» '
CardSource :
KJ--7---1 MemorizingDeck k>-aCards | cargstack
draw():Card H
isEmpty():boolean
: aCards
“---1 CircularDeck [>—

Fig. 7.2 Implementations of the cardSource service

Problems of redundancies such as the one illustrated here can be improved by re-
organizing the design. One mechanism of object-oriented programming languages
that is especially effective for supporting code reuse (and thus avoiding DUPLICATED
CODEY) is inheritance. Inheritance directly supports code reuse and extensibility be-
cause it allows us to define some classes in terms of other classes. The key idea
of inheritance is to define a new class (the subclass) in terms of how it adds to (or
extends) an existing base class (also called the superclass). Inheritance avoids re-
peating declarations of class members because the declarations of the base class will
automatically be taken into account when creating instances of the subclass.

In class diagrams, inheritance is denoted by a solid line with a white triangle
pointing from the subclass to the superclass. Figure 7.3 illustrates a variant of our
design where MemorizingDeck and CircularDeck are defined as subclasses of the
Deck base class.

Fig. 7.3 Inheritance-based

design for cardsource «interface»
CardSource

draw():Card
isEmpty():boolean

A

Deck

%

MemorizingDeck CircularDeck
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7.2 Inheritance and Typing

In Java the subclass-superclass relation is declared using the extends keyword:

public class MemorizingDeck extends Deck {
private CardStack aDrawnCards;

}

To understand the effects of inheritance in code, it is important to remem-
ber that a class is essentially a template for creating objects. Defining a subclass
MemorizingDeck as an extension of a superclass Deck means that when objects of
the subclass are instantiated, the objects will be created by using the declaration of
the subclass and the declaration of the superclass. The result will be a single ob-
ject. The run-time type of this object will be the type specified in the new operation.
However, just as for interface implementation, inheritance introduces a suptyping
relation. For this reason, an object can always be assigned to a variable of its super-
class (in addition to its implementing interfaces).

Deck deck = new MemorizingDeck () ;
CardSource source = deck;

In the code above, a new object of run-time type MemorizingDeck is created and
assigned to a variable named deck of compile-time type peck. This is legal because
MemorizingDeck is a subtype of Deck. The second line of the code example shows
another relation between variables and values of different, yet related, types. The
code declares a variable of type CardSource and assigns the value of variable deck
to it. The compile-time type of deck is Deck, which is a subtype of cardsource.
For this reason, the compiler allows the assignment. At run time, it will turn out that
the concrete type of deck is MemorizingDeck. However, because MemorizingDeck
is a subtype of both Deck and cardsource, this is fine.

In this chapter, the distinction between compile-time type and run-time type will
become increasingly important. In our case, when an instance of MemorizingDeck
is assigned to a variable of type Deck, it does not become a simple deck or lose any
of its subclass-specific fields. In Java, once an object is created, its run-time type
remains unchanged. All the variable reassignments accomplish in the code above is
to change the type of the variable that holds a reference to the object. The run-time
type of an object is the most specific type of an object when it is instantiated. It is the
type mentioned in the new operation, and the one that is represented by the object
returned by method getclass () (see Section 5.4). The run-time type of an object
never changes for the duration of the object’s lifetime. In contrast, the compile-time
(or static) type of an object is the type of the variable in which a reference to the
object is stored at a particular point in the code. In a correct program the static
type of an object can correspond to its run-time type, or to any supertype of its
run-time type. The static type of an object can be different at different points in the
code, depending on the variables in which an object is stored. Let us consider the
following example:
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public static boolean isMemorizing(Deck pDeck) {
return pDeck instanceof MemorizingDeck;

}

public static void main(String[] args) {
Deck deck = new MemorizingDeck () ;

MemorizingDeck memorizingDeck = (MemorizingDeck) deck;
boolean isMemorizingl = isMemorizing(deck); // true
boolean isMemorizing2 = isMemorizing(memorizingDeck); // true

At the first line of the main method, an object is created that is of run-time
type MemorizingDeck and assigned to a variable of type Deck. As stated above,
the run-time type of this object remains MemorizingDeck throughout the execu-
tion of the code. However, at the following line the static type of the variable
that stores the original object is MemorizingDeck, and within the body of method
isMemorizingDeck it is Deck (a formal parameter is a kind of variable, so the type
of a parameter acts like a type of variable). Because the run-time type of the ob-
ject never changes, the value stored in both isMemorizingl and isMemorizing?2
1S true.

Downcasting

To make the code above compile, it is necessary to use a cast operation (Memoriz-
ingDeck) . In brief, a cast operation is necessary to enable unsafe type conversion
operations. An example of an unsafe conversion between primitive types is to con-
vert a value of type long into a value of type int (which may cause an overflow).
Similarly, because a reference to a Deck is not guaranteed to refer to an instance
of MemorizingDeck at run time, it is necessary to flag the risky conversion using a
cast operator, a process known as downcasting.> When using inheritance, subclasses
typically provide services in addition to what is available in the base class. For ex-
ample, a class MemorizingDeck would probably include the definition of a service
to obtain the list of cards drawn from the deck:

public class MemorizingDeck extends Deck {
public Iterator<Card> drawnCards() { /* ... %/}
}

Because of the programming language’s typing rules, it is only possible to call
methods that are applicable for a given static type. So if we assign a reference to an
object of run-time type MemorizingDeck to a variable of type Deck, then we will
get a compilation error if we try to access a method of the subclass:

Deck deck = new MemorizingDeck () ;
deck.drawnCards () ;

2 The direction implied in the term is a consequence of the convention that in type hierarchies, the
top of the hierarchy is usually considered to be the root of the hierarchy.
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The compilation error is justified given that the code above would be type unsafe.
Because references to an instance of any subtype of Deck can be stored in variable
Deck, there is no guarantee that, at run time, the object in the variable will actually
define a drawnCards () method. If, based on our knowledge of the code, we are
sure that the object will always be of type MemorizingDeck, we can downcast the
variable from a supertype down to a subtype:

MemorizingDeck memorizingDeck = (MemorizingDeck) deck;
Iterator<Card> drawnCards = memorizingDeck.drawnCards () ;

Downcasting involves some risk because a downcast implicitly encodes an as-
sumption that the run-time type of the object referred to in the variable is of the
same type as (or a subtype of) the type of the variable. In a way, the code above
would be like writing:

assert deck instanceof MemorizingDeck;

If the assumption is wrong, possibly due to an oversight from the author of the
code, then the execution of the code cannot proceed, and the downcast will raise a
ClassCastException. For this reason, downcasting code will often be protected
by control structures to assert the run-time type of an object, such as:

if (deck instanceof MemorizingDeck) {
return ((MemorizingDeck)deck) .drawnCards();

Singly-Rooted Class Hierarchy

Java supports single inheritance, which means that a given class can only declare
to inherit from a single class. This is in contrast to languages such as C++, which
support multiple inheritance. However, because the superclass of a class can also
be defined to inherit from a superclass, classes can have, in effect, more than one
superclass. In fact, classes in Java are organized into a singly-rooted class hierarchy.
If a class does not declare to extend any class, by default it extends the library
class object. Class Object constitutes the root of any class hierarchy in Java code.
The complete class hierarchy for variants of Deck thus includes class object, as
illustrated in Figure 7.4. Because the subtyping relation is transitive, objects of class
MemorizingDeck can be stored in variables of type object.

7.3 Inheriting Fields

With inheritance, the subclass inherits the declarations of the superclass. The con-
sequences of inheriting field declarations are quite different from those of method
declarations, so I discuss them separately.

Field declarations define the structure of information stored by the object in-
stantiated from the corresponding class declaration. When instantiating a class, the
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Fig. 7.4 Complete class hier-

archy for peck
Object

Deck

%

MemorizingDeck CircularDeck

resulting object will have a field for each field declaration in the class named in the
new operation, and each of its superclasses, transitively. Given the following class
hierarchy:

public class Deck implements CardSource {
private final CardStack aCards = new CardStack();
VA Y

}

public class MemorizingDeck extends Deck {
private final CardStack aDrawnCards = new CardStack();
VR V4

}

objects created with the operation new MemorizingDeck () will have two fields:
aCards and abrawnCards. It does not matter that the fields are private. Accessibility
is a static concept, meaning that it is only relevant for the source code. The fact
that the code in class MemorizingDeck cannot access (or see) the field declared in
its superclass does not change anything about the fact that this field is part of the
object. For the fields to be accessible to subclasses, it is possible to set their access
modifier to protected instead of private. Alternatively, it is possible to access
their value through a getter method. Type members declared to be protected are
only accessible within methods of the same class, classes in the same package, and
subclasses in any package. To respect the principles of encapsulation presented in
Chapter 2, the accessibility of fields should however be minimized. This means that,
unless widening a field’s visibility to protected provides a clear advantage, a field
should be declared private, even if its value is required by subclasses. I revisit this
point in Section 7.4.3

3 The Java Language Specification (JLS) considers that private fields are not “inherited”. This is
a matter of terminology, because objects of subclasses do include the private fields declared in
their parent classes. When learning object-oriented design, mixing the concepts of visibility and
inheritance can be confusing, so I do not retain the terminology of the JLS. In this book, the
concepts of field inheritance and visibility are kept consistently distinct.
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The inheritance of fields creates an interesting problem of data initialization.
When an object can be initialized with default values, the process is simple. In
our case, if we assign the default values using the field initialization statement as
in the above statements (i.e., = new CardStack () ;), and rely on the default (i.e.,
parameterless) constructors, we can expect that creating a new instance of class
MemorizingDeck will result in an instance with two fields of type cardstack, each
referring to an empty instance of cardstack.*

However, it is often the case that initializing an object as part of its creation pro-
cess requires input data. For example, what happens if we want to make it possible
to initialize a deck with a set of cards supplied by the client code?

Card[] cards = {Card.get (Rank.ACE, Suit.CLUBS),
Card.get (Rank.ACE, Suit.SPADES) };
MemorizingDeck deck = new MemorizingDeck (cards)

’

In such situations, we must pay attention to the order in which the fields of an
object are initialized. The general principle in Java is that the fields of an object
are initialized fop down, from the field declarations of the most general superclass
down to the most specific class. In our example, acards would be initialized, then
abDrawnCards. This order is achieved by the fact that the first instruction of any
constructor is to call a constructor, generally of its superclass, and so on.> For this
reason, the order of constructor calls is botfom up. In our running example, declar-
ing:
public class MemorizingDeck extends Deck {

private final CardStack aDrawnCards = new CardStack();

public MemorizingDeck (Card[] pCards) {
/% Automatically calls super() =/
V4

}

means that the default constructor of Deck is called and terminates before the code
of the MemorizingDeck constructor executes. It is also possible to invoke the con-
structor of the superclass explicitly, using the super (...) call. However, if used,
this call must be the first statement of a constructor. Although it illustrates how
constructor calls are chained, the example above does not quite do what we want,
because it ignores the input cards. With the initialization mechanism we have seen
so far, however, it becomes possible to pass input values up to initialize fields de-
clared in a superclass. In our case we want to store the input cards into the acards
field defined by the Deck superclass. We would accomplish this as follows:

4 If no constructor is declared for a class, a default constructor with no parameter is invisibly made
available to client code. Declaring any non-default constructor in a class disables the automatic
generation of a default constructor.

5 If the superclass declares a constructor with no parameter, this call does not need to be explicit.
It is also possible for the first instruction of a constructor to be a call to another constructor of the
same class, using the statement this (.. .). Eventually, however, construction has to execute the
constructor of the superclass.



7.3 Inheriting Fields 165

Object client:

lr s

Deck «create»

:MemorizingDeck

aCards:CardStack

Deck(Card[]) Deck(...)

ﬁl Object()

MemorizingDeck

aDrawnCards:CardStack v

MemorizingDeck(Cardl}) | (@)  (b) o l

Fig. 7.5 Order of constructor call (a) and object construction (b). The calls to the constructors of a
superclass are self-calls

public class Deck {
private final CardStack aCards = new CardStack();

public Deck(){} // Relies on the field initialization

public Deck (Card[] pCards) {
for (Card card : pCards) {
aCards.push (card); }

public class MemorizingDeck extends Deck {
private final CardStack aDrawnCards = new CardStack();

public MemorizingDeck (Card[] pCards) {
super (pCards) ;
}

Here the only statement of the MemorizingDeck constructor is an explicit call to
the constructor of the superclass. This call passes in the initialization data. Once the
super call terminates, the execution of the constructor of the same class continues
with the initialization of the aDrawnCards field.

Calling the constructor of the superclass with super (. . .) is very different from
calling the constructor of the superclass with a new statement. In the latter case, two
different objects are created. The code:
public MemorizingDeck (Card[] pCards) {

new Deck (pCards) ;

}
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calls the constructor of Deck, which creates an additional peck instance, different
from the instance under construction, immediately discards the reference to this
instance, and then completes the initialization of the object. This code would not
serve many useful purposes.

7.4 Inheriting Methods

Inheriting methods is different from inheriting fields because method declarations
do not store information that represents the state of an object, and so do not require
any initialization. Instead, the implications of method inheritance center around
the question of applicability. By default, methods of a superclass are applicable
to instances of a subclass. For example, if we define a method shuffle() in
class Deck, it will be possible to call this method on an instance of its subclass
MemorizingDeck:

MemorizingDeck memorizingDeck = new MemorizingDeck () ;
memorizingDeck.shuffle();

This “feature” is nothing special, as it is only a consequence of what a method
represents and the rules of the type system. Here it is worth remembering that an
instance (i.e., non-static) method is just a different way to express a function that
takes an object of its declaring class as its first argument. For example, the method
shuffle () in Deck:

public class Deck implements CardSource {
private CardStack aCards = new CardStack();

public void shuffle() {
// The ’‘this’ keyword is optional in this case. It is used
// here to contrast with the alternative below.
this.aCards.clear();
this.initialize();

}

private void initialize () {
/+ Adds all 52 cards to aCard in random order =/
}
}

is more or less equivalent to the static method:

public static void shuffle (Deck pThis) {

pThis.aCards.clear();

pThis.initialize();
}

In the first case, the function is invoked by specifying the target object before the
call: memorizingDeck.shuffle (). A reference to this object is accessible through
the this keyword within the method, also referred to as the implicit parameter.®

6 Use of the this keyword is optional, as it can be inferred by the compiler if absent.
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In the second case, the function is invoked by indicating the target object as an ex-
plicit argument after the method name: shuffle (memorizingDeck). In this case,
it can be necessary to specify the type of the class where the method is located, so
Deck.shuffle (memorizingDeck). What this example illustrates is that methods
of a superclass are automatically applicable to instances of a subclass because in-
stances of a subclass can be assigned to a variable of any supertype. In our example,
because it is legal to assign a reference to a MemorizingDeck to a parameter of type
Deck, the shuffle () method is applicable to instances of any subclass of Deck.

In some cases, a method inherited from a superclass does not do quite what we
want. In our running example, this would be the case for method draw (), which in
the Deck base class just draws a card from the deck:

public class Deck implements CardSource {
private CardStack aCards = new CardStack();

public Card draw () {
return aCards.pop();

}

Using peck’s version of method draw() on instances of MemorizingDeck
through inheritance does not do what we need, because that method does not mem-
orize anything. In such cases, we need to redefine, or override, the behavior of the
inherited method by supplying an implementation in the subclass that only applies
to instances of the subclasses. For method draw () we would want:

public class MemorizingDeck extends Deck {
private CardStack aDrawnCards = new CardStack();

public Card draw () {
Card card = aCards.pop();
aDrawCards.push (card) ;
return card;

Unfortunately, this code will not compile because the code of method draw ()
in MemorizingDeck refers to private field acards of class Deck. Because private
fields are only accessible within the class where they are declared, this field is not
visible in other classes, including subclasses. One possible workaround is to define
aCards as protected instead. A protected access modifier for a field allows sub-
classes to manipulate some structure of the superclass when overriding methods.
Unfortunately, increasing the visibility of acards from private to protected has
a corresponding negative impact on encapsulation, because now it is possible to re-
fer to the field, and thus mutate the object it refers to, from many different classes
instead of just one. To circumvent this issue, we can resort to other alternatives,
including the use of super calls, introduced below.

Overriding inherited methods has a major consequence on the design of an
object-oriented application, because it introduces the possibility that multiple method
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implementations apply to an object that is the target of a method invocation. For ex-
ample, in the code:

Card card = new MemorizingDeck () .draw();

both Deck#draw() and MemorizingDeck#draw () are applicable and can thus
legally be used. Which one is used? For the program to work, the programming
environment (the Java Virtual Machine) must follow a consistent method selection
algorithm.

For overridden methods, the selection algorithm is relatively intuitive: when mul-
tiple implementations are applicable, the run-time environment selects the most spe-
cific one based on the run-time type of the implicit parameter. As previously defined,
the run-time type of an object is the actual class that was instantiated: the class name
that follows the new keyword, or the class type represented by the object returned by
acall to object#getClass (). Because the selection of an overridden method relies
on run-time information, the selection procedure is often referred to as dynamic dis-
patch, or dynamic binding. It is important to note that the dynamic dispatch process
does not takes into account the type of the variable in which an object is stored. So,
in this example:

Deck deck = new MemorizingDeck () ;
Card card = deck.draw();

the method MemorizingDeck#draw () would be selected, even though the static
(compile-time) type of variable holding the target object is Deck.

In some cases, it can be necessary to bypass the dynamic binding mechanism and
link to a specific, statically-predictable method implementation. In Java, however,
for instance methods it is only possible to do so by referring to the implementation
of the method that is being directly overridden. This exception to the usual dy-
namic binding mechanism is intended to support the common case where a method
is overridden to provide behavior in addition to what the inherited method does.
To illustrate this case, let us return to the issue of overriding method draw () in
class MemorizingDeck. This time, we will do it without declaring acards to be
protected

The key insight we use to accomplish this is to observe that to draw a card from
aCards, we can also use Deck’s own draw () method. So, conceptually, what we
want could look like this:

public class MemorizingDeck extends Deck {
private CardStack aDrawnCards = new CardStack();

public Card draw () {
Card card = draw(); // Problematic
aDrawCards.push (card) ;
return card;

Here, the naive intention is that by calling draw () inside MemorizingDeck#-
draw (), we can execute the code of Deck#draw () and thus draw a card from
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aCards. Unfortunately this does not work precisely because of the dynamic binding
mechanism described above. Because the call to draw () within MemorizingDeck#-
draw () will be dispatched on the same object, the same method implementation will
be selected, endlessly. The result will be a stack overflow error, because the method
will call itself without a termination condition.

What we really want, instead, is to refer specifically to Deck#draw () within
MemorizingDeck#draw (). In other words, we want to statically bind the method
call draw () to the implementation located in Deck. In Java, to refer to the specific
implementation of a method located in the superclass from within a subclass, we
use the keyword super followed by the method call.

public class MemorizingDeck extends Deck {
public Card draw () {
Card card = super.draw();
aDrawCards.push (card) ;
return card;

This mechanism is referred to as a super call. Its effect is to statically bind the
method call to the first overridden implementation of the method found by going
up the class hierarchy. The implementation does not need to be in the immediate
superclass, but there needs to be at least one inherited method that can be selected
in this way.

Annotating Overridden Methods

For a method to effectively override another one, it needs to have the same signature
as the one it overrides.” This requirement for matching method signatures opens the
door to errors with mystifying consequences.

For example, let us say we want to override the equals and hashCode methods
for class Deck, as discussed in Section 4.6, and we proceed as follows:

public class Deck implements CardSource {
public boolean equals (Object) { /x ... x/ }
public int hashcode () { /* ... #*/}

}

With these definitions we would expect that instances of Deck could be stored in
collections such as a Hashset without problems, given that we are properly overrid-
ing hashCode () to ensure equal instances of Deck have the same hash code. Except
that we are not, because the name of the method declared in Deck iS hashcode ()
and not hashCode (). Although we expect Object#hashCode () to be overridden,
the hard-to-see, one-character difference in the name means that the method is, in

7 Technically, it could have a subsignature as defined in Section 8.4.2 of the Java Language Speci-
fication. However, this subtlety is outside the scope of this book, so for simplicity we can consider
that the match in terms of method names, parameter types, and declared exceptions, must be exact.
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fact, not overridden. Unless we notice the name difference, the bugs this problem
would cause could be very hard to explain.

To avoid situations like these, where we expect a method to be overridden when
it is not, we can use Java’s @override annotation (see Section 5.4 for a review
of annotation types). The goal of this annotation is to allow programmers to for-
mally state their intent to override a method. The compiler can then check this intent
against reality and warn of any mismatches. If a method annotated with @override
does not actually override anything, a compilation error is raised. The case for using
@override annotations is compelling and I use them systematically when writing
code. However, for conciseness, I do not include overriding annotations in the code
examples within the text.

7.5 Overloading Methods

As we saw above, overriding methods allows programmers to declare different ver-
sions of the same method, so that the most appropriate method will be selected based
on the run-time type of the implicit parameter. Java and many other programming
languages support another mechanism for specifying different implementations of
the same method, this time by selecting the method based on the types of the explicit
parameters. This mechanism is known as overloading. A typical example of over-
loading can be found in math libraries such as java.lang.Math, which provide
basic functions such as abs (absolute value) for arguments of different primitive
types, such as int or double. Another typical application of overloading is for con-
structors. For example, Section 7.3 discusses a scenario where two constructors for
MemorizingDeck are provided, one that takes no argument, and one that takes an
array of card instances.

The main thing to know about overloading is that the selection of a specific
overloaded method or constructor is based on the number and static types of the
explicit arguments. The selection procedure is to find all applicable methods and
to select the most specific one. Let us consider the following implementation of
MemorizingDeck, which overloads the constructor with three different versions:

public class MemorizingDeck extends Deck {
private CardStack aDrawnCards = new CardStack();

public MemorizingDeck () {
/% V1: Does nothing besides the initialization */

}

public MemorizingDeck (CardSource pSource) {
/* V2: Copies all cards of pSource into this object x/
}

public MemorizingDeck (MemorizingDeck pSource) {
/% V3: Copies all cards and drawn cards of pSource x/

}
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If we call a constructor for MemorizingDeck, three versions of the constructor are
available to fulfill the task. In some cases, which version is selected can be trivially
deduced. For instance, if we call the constructor and supply no argument, clearly,
the parameterless version will be selected. However, things can get tricky when the
types of overloaded versions are related to each other within a type hierarchy. The
following code illustrates the situation:

MemorizingDeck memorizingDeck = new MemorizingDeck();

Deck deck memorizingDeck;
Deck newDeckl = new MemorizingDeck (memorizingDeck);
Deck newDeck2 = new MemorizingDeck (deck);

Here the constructor of MemorizingDeck is invoked three times. In the first call,
the parameterless constructor is selected. In the second call, the constructor used is
version 3 (V3), which might be intuitive in this example because MemorizingDeck
is both the run-time type of the argument object and the static type of the variable
holding a reference to it. However, it can appear surprising that for newDeck2, it is
version 2 of the constructor that is used. That is because in this case the static type
of the argument passed to the constructor is Deck. Because Deck is a subtype of
CardSource but not a subtype of MemorizingDeck, the only applicable overload
is version 2. If we change the type of deck from Deck to MemorizingDeck, then
version 3 is the one that will be selected. It is worth noting that the types of variables
newDeckl and newDeck2 play no role whatsoever in the selection algorithm for
overloaded methods and constructors.

Although overloading provides a convenient way to identify related alternatives
of a given specification, the use of this mechanism can also lead to code that is
hard to understand. This is especially the case when the types of the parameters of
overloaded versions of a method or constructor are related within a type hierarchy,
as illustrated above. For this reason I recommend avoiding overloading methods
except for widely used idioms (such as constructor overloading or library methods
that support different primitive types). In many designs, the same properties can be
achieved without overloading (namely, by giving different names to the methods
that take different types of arguments).?

7.6 Polymorphic Copying with Inheritance

In the presence of inheritance, the guideline to minimize the visibility of fields can
conflict with our ability to implement polymorphic copying (see Section 6.6). To
make an exact copy of an object, it is necessary to have detailed information about
the complete state of the object so as to be able to replicate it faithfully. For the sake
of illustration, let us assume that we are implementing polymorphic copying for the
class hierarchy shown in Figure 7.6.

8 Although it is not possible to change the name of constructors, one alternative is to replace
overloaded versions of public constructors with static factory methods with different names.
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Deck
«interface» aCards: CardStack MemorizingDeck
CardSource b Cards-CardStack
. aDrawnCards:CardStacl
draw():Card <t~ Deck()
. draw():Card
isEmpty():boolean iSEmpty():boolean
. - copy(): MemorizingDeck
copy():CardSource shuffle()-void
copy():Deck

Fig. 7.6 Implementing polymorphic copying with inheritance

The implementation of method copy () in class Deck poses no problem, as we
have seen in Section 6.6:

public Deck copy () {
Deck deck = new Deck();
deck.aCards = new CardStack (aCards);
return deck;

In the presence of inheritance, however, it will be important to systematically
override the copy () method, because inheriting it will lead to faulty code. The fol-
lowing example shows a faulty usage of an inherited version of method copy () :

Deck deck = new MemorizingDeck () ;
Deck copy = deck.copy(); // Error

In this case, because there is no available implementation of MemorizingDeck#-
copy, the most specific applicable method for the call to copy () is Deck#copy.
However, this method returns an object of type Deck as a copy of an object of type
MemorizingDeck. This behavior will violate one of the main constraints for object
equality, namely that the objects be of the same type (see Section 4.6). To cor-
rectly support polymorphic copying, it is thus imperative that we override copy ()
in all leaf classes of the cardSource type hierarchy. Unfortunately, this leads to
another problem. Let us attempt an implementation of method copy () for class
MemorizingDeck:

public MemorizingDeck copy () {
MemorizingDeck deck = new MemorizingDeck () ;
deck.aCards = new CardStack (aCards); // Compilation error
deck.aDrawnCards = new CardStack (aDrawnCards) ;
return deck;

}

This code will not compile because aCards is a private field of class Deck, and thus
not visible within class MemorizingDeck. One option is to change the visibility of
the field to protected. However, widening the accessibility of a field in a superclass
is not a general solution, because in many design contexts we may be inheriting from
a class that we cannot change (for example, a library class). Second, by widening the
scope of a field in a superclass, we are weakening the encapsulation in the overall
design, just to support copying.
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Java provides a mechanism, called cloning, to get around this limitation. This
cloning mechanism revolves around the overriding of the protected clone () method
of class object. Unfortunately, the Java cloning mechanism suffers from a variety
of design flaws which render it “fragile, dangerous”, and complex to use [2]. For
this reason, it should only be used to support polymorphic copying with inheritance
when no better alternative is available. Because the Java cloning mechanism is de-
scribed at length in existing references (see Further Reading), I only summarize its
main underpinnings here.

To clone an object, it is necessary to override Object#clone () as a public
method, and make a super call to clone () from within the method. For example, to
support cloning for class Deck, we would write (within class Deck):

public Deck clone () {
// NOT Deck clone = new Deck();
Deck clone = (Deck) super.clone();
VI V4

}

The statement super.clone () calls the clone () method in the superclass, which
here means method Object#clone (). This method is special: it uses metaprogram-
ming features (see Section 5.4) to make a field-by-field shallow copy of the current
object and returns the copy. This is unusual because, although the method is im-
plemented in the library class Object, it still returns a new instance of class Deck.

deck:Deck
:CardStack
aCards= —
:Card
aCards= —
clone:Deck
:Card
aCards= —

Fig. 7.7 Object graph resulting from an incomplete implementation of c1lone ()

Whenever an object aggregates other mutable objects, the shallow copy per-
formed via object#clone () will likely be insufficient. For example, in the code
above, the execution of the clone () method results in a shared reference to the
value of the field acards, as illustrated in Figure 7.7. Because this outcome would
break encapsulation and most likely be incorrect, the clone () method must also
make a new copy of the Cardstack, this time using a copy constructor:
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public Deck clone () {
Deck clone = (Deck) super.clone();
clone.aCards = new CardStack (aCards) ;
return clone;

deck:MemorizingDeck

/ :CardStack
aCards = —

aDrawnCards = —

:CardStack
clone:MemorizingDeck
aCards = :CardStack

aDrawnCards = —

Fig. 7.8 Object graph resulting from an inherited implementation of clone ()

Because of the requirement to deep-copy certain structures, inheriting clone ()
still carries the risk of error, even if the class of the returned object is the correct one.
In our current scenario, calling the inherited method Deck#clone () on an object of
type MemorizingDeck would lead to the structure illustrated in Figure 7.8. As we
can see, the use of Object#clone () leads to an object of the correct class being
created, but the absence of a specialized version of clone () for MemorizingDeck
means that the abrawncards field is only shallow-copied.

In an attempt to mitigate all the risks of misusing object#clone, the designers
of the cloning mechanism imposed a number of additional constraints for classes
that implement cloning. One such constraint is the need to implement interface
Cloneable and deal with some unintuitive exception-handling requirements. Read-
ers interested in using cloning in their design are encouraged to study the technical
documentation carefully before proceeding (see Further Reading).

7.7 Inheritance Versus Composition

Inheritance provides an alternative to composition as a design approach to deal with
situations where some objects are extended versions of other objects. To explore
some of the differences between the two, let us consider the composition vs. inheri-
tance alternatives for meeting the requirements for a MemorizingDeck.
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With composition, we can define a class MemorizingDeck that implements
CardSource but aggregates a simple deck. The methods of Memorizingbeck will
then delegate their call to methods on the Deck object.

public class MemorizingDeck implements CardSource {

private final Deck aDeck = new Deck();
private final CardStack aDrawCards = new CardStack();

public boolean isEmpty () {
return aDeck.isEmpty () ;

}

public void shuffle() {
aDeck.shuffle();
aDrawnCards.clear () ;

public Card draw () {
Card card = aDeck.draw();
aDrawnCard.push (card) ;
return card;

In contrast, with inheritance, the cards in the deck are not stored in a separate
deck, but rather referred to from a field inherited from the superclass. In terms of
methods, shuffle (), isEmpty (), and draw () are also inherited from the super-
class, so they do not all need to be redefined to delegate the call, as in composition.
In our example we only need to override shuffle () and draw () to account for
the memorization. Method isEmpty () can be directly inherited and still do what
we want. In the code of the overridden methods, the delegation to another object is
replaced by a super call, which executes on the same object.

public class MemorizingDeck extends Deck {
private CardStack aDrawCards = new CardStack();

public void shuffle() {
super.shuffle();
aDrawnCards = new CardStack();

}

public Card draw () {
Card card = super.draw();
aDrawnCard.push (card) ;
return card;

This last implementation, however, illustrates how designing with inheritance
can be tricky. In the code above, when shuffling the deck, we also reset the stack of
drawn cards by assigning a new object to the instance variable abrawnCards. As a
tempting alternative, we might want to define abrawnCards to be a final field, and
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reset the object with a call to aDrawnCards.clear () within shuffle (). However,
this will result in a Nul1PointerException being raised whenever a new object is
created. Why?

The explanation has to do with the order of field initialization, as described in
Section 7.3. When the constructor of MemorizingDeck is called, the first instruc-
tion to execute is to call the constructor of Deck.? At this point, aDrawnCards is
not yet initialized, and thus refers to nul1. Then the constructor of Deck executes,
which calls method shuffle (). However, because this method is now overridden
in MemorizingDeck, it is that implementation that gets selected. This method exe-
cutes without the fields declared in MemorizingDeck having been initialized. After
the super call returns, the attempt to call a method on aDrawnCards will trigger the

NullPointerException.

:MemorizingDeck :Deck
client:
= / /P :CardStack
aDeck = — aCards = —
deck = —
aDrawnCards = —
\P :CardStack
:MemorizingDeck :CardStack
client:
aCards= —
deck = —
aDrawnCards = _|_— :CardStack

Fig. 7.9 Two implementations for MemorizingDeck: composition-based (top), and inheritance-
based (bottom)

Overall, the main difference between the composition- and inheritance-based so-
lutions is the number of Deck objects involved (see Figure 7.9). The composition-
based approach provides a solution that requires coordinating the work of two Deck
objects: a basic Deck object and a wrapper object MemorizingDeck. Thus, as dis-
cussed in Section 6.4, the identity of the object that provides the full MemorizingDeck
set of features is different from that of the other object that provides the basic card-
handling services of the deck. In contrast, the use of a MemorizingDeck subclass
creates a single MemorizingDeck object that contains all the required fields.

In many situations, it will be possible to realize a design solution using either
inheritance or composition. Which option to choose will ultimately depend on the
context. Composition-based reuse generally provides more run-time flexibility. This

9 Because the declaration of the constructor is left out, this is not visible in the code. However, a
default (parameterless) constructor gets generated which calls the default constructor of peck.
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option should therefore be favored in design contexts that require many possible
configurations, or the opportunity to change configurations at run time. At the same
time, composition-based solutions provide fewer options for detailed access to the
internal state of a well-encapsulated object. In contrast, inheritance-based reuse so-
lutions tend to be better in design contexts that require a lot of compile-time con-
figuration, because a class hierarchy can easily be designed to provide privileged
access to the internal structure of a class to subclasses (as opposed to aggregate and
other client classes). Inheritance also supports finer-grained polymorphism. With
inheritance, it is possible to store a reference to an instance of MemorizingDeck
in a variable of type Deck. This is not possible in the composition-based solution
because MemorizingDeck is not a subtype of Deck.

7.8 Abstract Classes

There are often situations where locating common class members into a single su-
perclass leads to a class declaration that it would not make sense to instantiate. As
a running example for this section and the next, I continue to develop the concept
of command objects as introduced in Section 6.8. Let us assume that for a card
game application we decide to apply the CommanD pattern and use the following
definition of the command interface.

public interface Move {
void perform();
void undo () ;

}

A move represents a possible action in the game. Calling perform() on any sub-
type of Move performs the move, and calling undo () undoes the move. The class
diagram of Figure 7.10 shows a hypothetical application of the CoMMAND pattern.
Following a common naming convention, classes that implement the interface in-
clude the name of the interface as a suffix (for example, DiscardMove represents
the move that discards a card from the deck).

CardMove
J O S —
CardMove(GameModel)
aModel
«interface» :
Move : RevealTopMove
=T aModel GameModel
perform():void i | RevealTopMove(GameModel)
undo():void '
aModel
DiscardMove
DiscardMove(GameModel)

Fig. 7.10 Abstract and concrete commands
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At a glance the diagram reveals a redundancy: each concrete command class
stores an aggregation to an instance of GameModel, which the implementation of
perform() and undo () will rely on when executing the respective commands. In
terms of source code, this would look very similar: a field of type GameMode1 (called
aModel in the diagram). As pointed out in Section 7.1, avoiding CODE DUPLICATIONT
is an important motivation for inheritance, so we should pull up the field aModel into
a common superclass. However, there is a big difference between the Deck class
example of Section 7.1 and the command example discussed here. With a Deck
base class and various subclasses that specialize it, it makes sense to instantiate
the base class. If we want an instance of a beck with no frills, we instantiate class
Deck. In the case of commands, what would be the base class? One option is to
arbitrarily select one concrete command and use it as the base class, as illustrated
by the diagram of Figure 7.11.

«interface»
Move

perform():void

undo():void
N
DiscardMove :
DiscardMove(GameModel)
CardMove

GameModel

CardMove(GameModel)

RevealTopMove

RevealTopMove(GameModel)

Fig. 7.11 Abuse of inheritance: the members of the base class end up being completely redefined
instead of specialized

Although this could work, it is not good design. An important principle of in-
heritance is that a subclass should be a natural subtype of the base class that ex-
tends the behavior of the base class. In our case, a DiscardMove iS not a spe-
cialized version of a cardMove, it is a completely different type of move. First,
CcardMove may define non-interface methods that make no sense for users of its
subclass (e.g., destination () to get the destination when moving a card). Second,
this idea is risky, because DiscardMove and RevealTopMove automatically inherit
the perform () and undo () methods of class cardMove, which need to be overrid-
den to implement the actual move we want. If we forget to implement one (undo ()
for example), then calling perform() will do one thing, and calling undo () will
undo something else! These types of bugs can be hard to catch. I return to the issue
of design ideas that abuse inheritance in Section 7.11. To use inheritance properly,
here we need to create an entirely new base class, and have all concrete commands
inherit it, as shows in Figure 7.12.

Now we avoid the hack of having subclasses that morph their superclass into
something entirely different. However, at the same time we have a problematic situa-
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«interface»
Move

perform():void
undo():void

2

DiscardMove

DiscardMove(GameModel)

DefaultMove K>—— GameModel

RevealTopMove

RevealTopMove(GameModel) T

CardMove

CardMove(GameModel)

Fig. 7.12 Inheritance with additional base class

tion: what is a DefaultMove, really? What would the implementation of perform ()
and undo () do? Even using some sort of default behavior seems questionable, be-
cause that would bring us back to the idea of using a base class that is not con-
ceptually a base for anything. A key realization to move forward is that our new
base class represents a purely abstract concept that needs to be refined to gain con-
creteness. This design situation is directly supported by the abstract class feature
of a programming language. Technically, an abstract class represents a correct but
incomplete set of class member declarations.

In Java, a class can be declared abstract by including the keyword abstract in
its declaration. It is also a common practice to prefix the identifier of an abstract
class with the word abstract. Hence, in our design the DefaultMove should be
called abstractMove, and its definition would look like this:

public abstract AbstractMove implements Move {
private final GameModel aModel;

protected AbstractMove (GameModel pModel) {
aModel = pModel;
}
V2 S 4
}

Declaring a class to be abstract has three main consequences:

* An abstract class cannot be instantiated, which is checked by the compiler.
This is a good thing because abstract classes should represent abstract concepts
that it makes no sense to instantiate. Another typical example, besides abstract
commands, would be something like an AbstractFigure in a drawing editor.
Unlike concrete figures (rectangles, ellipses), an abstract figure has no geometric
representation, so in most designs something like that would be likely to end up
as an abstract class.
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An abstract class does not need to supply an implementation for all the
methods in the interface(s) it declares to implement. This relaxing of the inter-
face contract is type-safe because the class cannot be instantiated. However, any
concrete (that is, non-abstract) class will need to have implementations for all re-
quired methods. What this means in our case is that, even though AbstractMove
declares to implement Move, we do not have to supply an implementation for
perform() and undo () in the abstract class. However, this assumes that non-
abstract subclasses of AbstractMove will supply this missing implementation.

An abstract class can declare new abstract methods using the same abstract
keyword, this time placed in front of a method signature. In practice, this means
adding methods to the interface of the abstract class, and thereby forcing the
subclasses to implement these methods. The usage scenario for this is somewhat
specialized, and I will cover it in detail in Section 7.10. However, for now, we can
just say that abstract methods are typically called from within the class hierarchy:
by methods of the base class, by methods of the subclasses, or both.

Because abstract classes cannot be instantiated, their constructor can only be

called from within the constructors of subclasses. For this reason it makes sense to
declare the constructors of abstract classes protected. In our running example, the
constructor of AbstractMove would be called by the constructor of subclasses to
pass the required reference to the GameModel up into the base class:

public class CardMove extends AbstractMove {

public CardMove (GameModel pModel) {
super (pModel) ;
}

Code Exploration: JetUML - Edge class hierarchy

A multi-level type hierarchy with interface and abstract class.

JetUML defines a class hierarchy rooted at interface Edge (itself a subinterface
of the more general DiagramElement). There is a lot going on in the Edge
hierarchy. This discussion will focus on how I used subclasses to progressively
extend the data stored by edge objects.

The immediate implementation type for interface Edge is AbstractEdge.
This class already inherits from another abstract class AbstractDiagram-
Element. Class AbstractDiagramElement groups declarations that apply
to both nodes and edges, whereas its subclass AbstractEdge adds fields
that are only relevant to edges. These fields are a reference to the start and
end node for the edge. The separation between AbstractDiagramElement
and AbstractEdge illustrates how it can be useful to have multiple abstract
classes in a type hierarchy.

Among the different subclasses of AbstractEdge, let us focus on
SingleLabelEdge. This class is also abstract. It adds one field that corre-
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sponds to a label on the edge. Thus, singleLabelEdge can be subclassed by
any class intended to represent a UML edge that has at least one label. For ex-
ample, ReturnEdge (which represents a return edge in a sequence diagram) is
a concrete subclass because return edges only need one label. However, some
edges require three labels. ThreeLabelEdge is a fourth abstract class down
the Edge class hierarchy that adds two more label fields, for a total of three.
The classes that represent actual edges are the leaves of the class hierarchy,
and their names map to the names of UML edges (aggregation, generalization,
etc.).

7.9 The DECORATOR Pattern with Abstract Classes

In Section 6.4, we saw how we can use the DECORATOR pattern to add features, or
decorations, to an object at run time. The key idea of the DEcoraToR is to define
these decorations using wrapper classes and composition as opposed to subclasses.
Figure 7.13 reproduces Figure 6.8, which shows a class diagram of the sample ap-
plication of DECORATOR to the Cardsource design context.

Component

«interface»
LoggingDecorator k>  cardSource ——<> MemorizingDecorator
LoggingDecorator(CardSource) draw():Card MemorizingDecorator(CardSource)

isEmpty():boolean

Decorator 1 7 Al‘ _________ Decorator
Leaf Leaf
-1 Deck CardSequence [ -

Fig. 7.13 Class diagram of a sample application of DECORATOR

When a design involves multiple decorator types, as in this example, each dec-
orator class will need to aggregate an object to be decorated. This introduces the
kind of redundancy that inheritance was designed to avoid. Thus, we can use inher-
itance to pull up the field implementing the aggregation into an abstract decorator
base class, and define concrete decorator subclasses that then only need to deal with
the specific decoration. This solution, shown in Figure 7.14, is an illustration of a
design that combines composition and inheritance. Specifically, a decorator object
is of a subtype that inherits the aElement field, which is then used to aggregate the
instance of CardSource that is being decorated.
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AbstractDecorator
«interface» 1

aElement
CardSource AbstractDecorator(CardSource)

q. _________________________
draw():Card Simple
draw():Card isEmpty():boolean "7~ P :
isEmpty():boolean Py(): delegation
3 T |

LoggingDecorator MemorizingDecorator
Deck CardSequence
LoggingDecorator(CardSource) MemorizingDecorator(CardSource)
draw():Card draw():Card

Fig. 7.14 Class diagram of a sample application of DEcorator that uses inheritance

With this design, the AbstractDecorator includes default delegation to the dec-
orated element.

public abstract class AbstractDecorator implements CardSource {
private final CardSource aElement;

protected AbstractDecorator (CardSource pElement) {
aElement = pElement;

public Card draw () {
return aElement.draw();

public boolean isEmpty () {
return aElement.isEmpty();

It is worth noting that the aElement field is private. This means that concrete
decorator classes will not have access to it. This level of encapsulation is workable
because normally in the DECORATOR, decorated elements are only accessed through
the methods of the component interface. In this case, subclasses can simply use the
implementation of the interface methods they inherit from AbstractDecorator to
interact with the decorated object. As an example, the following is a basic imple-
mentation of a LoggingDecorator that outputs a description of the cards drawn to
the console.

public class LoggingDecorator extends AbstractDecorator ({

public LoggingDecorator (CardSource pElement) {
super (pElement) ;
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public Card draw () {
Card card = super.draw();
System.out.println (card);
return card;

Class LoggingDecorator does not supply an implementation of i sEmpty () be-
cause the one it inherits, which delegates the call to atlement, does what we want.
As for draw, the method is redefined to do a basic draw operation using the inherited
method, print the card, then return it to complete the require behavior.

7.10 The TEMPLATE METHOD Design Pattern

One potential situation we may face with inheritance is when some common algo-
rithm applies to objects of a certain base type, but a part of the algorithm varies
from subclass to subclass. To illustrate this situation, let us go back to the design
context of creating and managing moves in the Solitaire application, as discussed
above in Section 7.8 and illustrated in Figure 7.12 (with DefaultMove renamed to
AbstractMove). In this context we also assume that aModel’s access modifier is
protected

Let us assume that calling method perform () on moves of any type should ac-
complish three actions: 1) Add the move to an undo stack, possibly located in the
GameMode1; 2) Perform the actual move; 3) Log the move by writing out a descrip-
tion of what happened. This algorithm can be described with the following code,
which could be in any concrete subclass of AbstractMove:

public void perform() {
aModel.pushMove (this) ;
/+ Actually perform the move x/
log();

}

In this code, the first statement of method perform() pushes the current move ob-
ject onto a command stack located in the game model. The block comment corre-
sponds to the actual implementation of the move, which would vary from move to
move. The final statement implements some logging of the move, for example by
printing the name of the command class to the console. Let us assume the same
approach is used for undo (), with moves being popped instead of pushed. Be-
cause parts of the code are in common, it will benefit from being pulled up to the
AbstractMove superclass for two main reasons:

* So that it can be reused by all concrete Move subclasses, thereby avoiding DupLI-
CATED CODET;

* So that the design is robust to errors caused by inconsistently re-implementing
common behavior. Specifically, we want to prevent the possibility that a devel-
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oper could later declare a new concrete subclass of Move and supply it with an
implementation of method perform () that does not do Step 1 or 3.

Because the implementation of perform () needs information from subclasses to
actually perform the move, it cannot be completely implemented in the superclass.'”
The solution to this problem is to put all the common code in the superclass, and
to define some hooks to allow subclasses to provide specialized functionality where
needed. This technique is described as the TEMPLATE METHOD design pattern. The
name relates to the fact that the common method in the superclass is a template, that
gets realized differently for each subclass. The steps in the algorithm are defined
as non-private'! methods in the superclass. The code below illustrates a sample
application of TEMPLATE METHOD:

public abstract class AbstractMove implements Move {
protected final GameModel aModel;

protected AbstractMove (GameModel pModel) {
aModel = pModel;
}

public final void perform() {
aModel.pushMove (this) ;
execute () ;
log();

}

protected abstract void execute();

private void log () {
System.out.println (getClass () .getName());
}

In this code example, the implementation of method perform () introduces two
new concepts related to inheritance: final methods (and classes) and abstract method
declarations in classes.

Final Methods and Classes

In Java, declaring a method as final means that the method cannot be overridden
by subclasses. The main purpose for declaring a method as final is to clarify our
intent that a method is not meant to be overridden. One important reason for pre-
venting overriding is to ensure that a given constraint is respected. Final methods are

10 Although, technically, it would be possible to have a SWITCH STATEMENT in perform() that
checks the concrete type of the object using instanceof or getClass () and executes the appro-
priate code for all commands, this would introduce a dependency cycle between the base class and
its subclasses, and destroy the benefits of polymorphism. A bad idea of epic proportions.

I The step methods can have default, public, or protected visibility depending on the design con-
text. However, they cannot be private because private methods cannot be overridden.
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exactly what is needed for the TEMPLATE METHOD, because we want to ensure that
the template is respected for all subclasses. By declaring the perform () method to
be final, subclasses cannot override it with an implementation that would omit the
call to pushMove or log ().

The use of the final keyword with methods has an effect that is different from
the use of the same keyword with fields and local variables (see Section 4.5). The
use of final with fields limits how we can assign values to variables, and does not
involve inheritance, dynamic dispatch, or overriding.

The final keyword can also be used with classes. In this case, the behavior is
consistent with the meaning it has for methods: classes declared to be final can-
not be inherited. Inheritance in effect broadens the interface of a class by allowing
extensions by other classes. As demonstrated in Figure 7.11 and as will be further
discussed in the next section, inheritance is a powerful mechanism that can easily be
misused. A good principle to follow with inheritance is “design for inheritance or
else prohibit it” [2, Item 19]. In other words, inheritance should be used to support
specific extension scenarios (as the one illustrated in this section), or not used at
all. Because, by default, it is possible to inherit from a class, the mechanism needs
to be explicitly disabled to prohibit its use. Generally, stating that a class cannot
be inherited tends to make a design more robust because it prevents unanticipated
effects caused by inheritance. In our current example, we could decide to make im-
mediate subclasses of Abst ractMove final to make it clear that the class hierarchy
should not be extended through inheritance beyond a single level of concrete move
subclasses.

Although run-time performance is not a primary concern discussed in this book,
it is also worth noting that declaring classes and methods to be final can also have
some positive implications for the execution speed of a program, because the ab-
sence of dynamic dispatch for final classes means that code can be optimized to run
faster.

Abstract Methods

In the implementation of the perform() template method in abstractMove, the
second step is to perform the actual move. Within class AbstractMove, this step
is undefined given that an abstract move does not represent any concrete move we
could perform. For this reason, we need to leave out the actual execution of the
move. However, we cannot leave this step out entirely, because as part of our tem-
plate we do need to specify that executing the move needs to happen, and needs
to happen specifically after the move is pushed to the move stack and before the
move execution is logged. In our design we thus specify that this computation needs
to happen by calling a method. However, because all methods that are called need
to be declared, we must add a new method declaration. In this example I called it
execute (), because we cannot give it the same name as the template method (this
would result in a recursive call). Because we do not have any implementation for
execute (), we can defer the implementation to the subclasses. This is allowed be-
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cause AbstractMove is declared to be abstract, so there is no issue if the class’s
interface is not fully implemented. Although it sometimes makes sense to declare
abstract methods to be public, here I declare execute () to be protected because the
only classes that need to see this method are the subclasses of abstractMove that
must supply an implementation for it.

Summary of the Pattern

The declaration of class Abst ractMove, above, illustrates the key ideas of the so-
lution for TEMpLATE METHOD. The following points are also important to remember
about the use of the pattern:

¢ The method with the common algorithm in the abstract superclass is the template
method, it calls the concrete and abstract step methods;

e If, in a given context, it is important that the algorithm embodied by the template
method be fixed, it is recommended to declare the template method final;

* The most likely access modifier for the abstract step methods is protected,
because in general there will not be any reason for client code to call individual
steps that are intended to be internal parts of a complete algorithm. Client code
would normally be calling the template method;

* The steps that need to be customized by subclasses do not necessarily need to be
abstract. In some cases, it will make sense to have a default behavior that could be
implemented in the superclass. In this case it might not be necessary to make the
superclass abstract. In our example, there is a default implementation of l1og ()
that can be overridden by subclasses. In a different context, it might make more
sense to declare this method abstract as well.

When first learning to use inheritance, the calling protocol between code in the
super- and subclasses can be confusing because, although it is distributed over mul-
tiple classes, the method calls are actually dispatched to the same target object. The
sequence diagram in Figure 7.15 illustrates a call to perform () on a DiscardMove
instance. As can be seen, although it is implemented in subclasses, the call to the
abstract step method is a self-call.

7.11 Proper Use of Inheritance

Inheritance is both a code reuse and an extensibility mechanism. This means that a
subclass inherits the declarations of its superclass, but also becomes a subtype of its
superclass (and its superclass’s superclass, and so on). To avoid major design flaws,
inheritance should only be used for extending the behavior of a superclass. As such,
it is bad design to use inheritance to restrict the behavior of the superclass, or to use
inheritance when the subclass is not a proper subtype of the superclass.
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Fig. 7.15 Call sequence in

the TEMPLATE METHOD
client: move:DiscardMove :GameModel

perform()

pushMove(move

< __________________

DZI execute()
ﬁl log()

Restricting What Clients of Base Classes Can Do

As an example of a design idea to limit what a superclass can do using our running
scenario of a deck of cards, let us say that in some design context we need to have
decks of cards that cannot be shuffied. Given that we already have a class (Deck)
that defines everything we need to instantiate a deck, can we simply subclass Deck
to “deactivate” the shuffling? We could do this, for instance, by defining a subclass
UnshufflableDeck that overrides method shuffile () to either do nothing or throw
an exception if it is called.

This approach is problematic because it conflicts directly with the use of poly-
morphism, which supports calling operations on an object independently of the con-
crete type of the object. Let us consider the following hypothetical calling context:

private Card shuffleAndDraw (Deck pDeck) {

pDeck.shuffle();

assert !pDeck.isEmpty();

return pDeck.draw();

}

This code will compile and, assuming shuffle () normally resets the deck to
contain 52 cards, should do exactly what we want. However if, when the code exe-
cutes, the run-time type of the instance passed into shuffleAndbraw happens to be
an UnshufflableDeck, the code will either not work as expected (by silently not
getting shuffled and risking an assertion violation), or raise an exception (that is, fail
when executing). There is clearly something amiss here.

The intuition that inheritance should only be used for extension is captured by
the Liskov Substitution Principle (LSP). The LSP essentially states that subclasses
should not restrict what clients of the superclass can do with an instance. In practice
this means that, among others, overriding methods:

* Cannot have stricter preconditions;
* Cannot make the method less accessible (e.g., from public to protected);
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» Cannot take more specific types as parameters;
¢ Cannot have less strict postconditions;
» Cannot have a less specific return type.

This list seems like a lot of things to remember when designing object-oriented
software, but the whole point of the principle is that it allows us to reason about
overriding in general without having to remember an extensive list of cases.'? Nev-
ertheless, at first some of these points can seem counter-intuitive, so let us consider
concrete scenarios.

A subclass is not substitutable for the superclass if it has stricter preconditions,
because it makes the client code responsible for ensuring that additional condi-
tions hold in the presence of objects of the subclass. For example, we may want
to extend Deck to override method draw () so that it draws the highest of the top
two cards in the deck, and discards the other. This introduces a special case for
instances of Deck that have only one card. While drawing that one card without
additional side effects would respect the LSP, changing the precondition of method
draw () to require that the deck instance has two cards would violate the princi-
ple. In fact, our example above, of deactivating method shuffle (), iS an extreme
case of stricter preconditions, because for an instance of UnshufflableDeck (), the
precondition for shuffle () is always false, which clearly violates the LSP. Un-
fortunately, this facet of the LSP is notoriously violated by the Java Collections
Framework, which includes the concept of optional operations, such as List#add.
Attempting to call an optional operation on an instance that does not support it raises
an UnsupportedOperationException.

Java requires that overriding methods not be less accessible than the method
they override because, in effect, this would directly prevent substituting a subclass
for the superclass in any client code that uses a method not visible in the subclass.

For a subclass to override a method so that it requires more specific param-
eter types would also prevent it from being fully substitutable. For example, let
us assume that a Deck has a method initialize (Deck) that adds all cards in
the input deck to the implicit argument. Then, client code expects that it can add
cards from a Deck or any of its subtype to the current deck. If a subclass of Deck,
e.g., MemorizingDeck, defines its own method initialize (MemorizingDeck)
that only accepts a MemorizingDeck as argument, then it limits the flexibility of
the client code to call the method with Deck or any of its subtypes. Interestingly,
Java allows the definition of methods with the same name but more specific param-
eter types as a method in the superclass, but it treats the method in the subclass as
an overloaded version of the method (see Section 7.5). This situation is thus best
avoided, for it can be very confusing. The systematic use of the @override annota-
tion (see Section 7.4) would help flag this as a problem.

A subclass is also not substitutable for the superclass if it has less strict postcon-
ditions, because it makes the client code responsible for handling values it might

12 There are additional rules that can be derived from the Liskov Substitution Principle. For exam-
ple, Java does not allow overriding methods to declare to throw additional checked exceptions (see
Section A.8 in the appendix).
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not have anticipated. For example, if a method is guaranteed to return a positive
integer, an overridden version of the method that can also return negative integers
would violate the LSP because the client code was not expected to have to deal with
negative values.

A similar rule derived from the LSP is that overriding methods cannot have
a more general return type than the corresponding method in the superclass be-
cause the client may rely on certain services that may not be available in the more
general type. For example, if a subclass of Deck overrides method draw () to return
a value of type object instead of card, then the client code would not be able to
safely invoke methods suit () and rank () on the value returned by draw (). For
this reason, this eventuality is explicitly prevented by the Java compiler.

The classic example of a violation of the LSP is the so-called Circle-Ellipse prob-
lem, wherein a class to represent a circle is defined by inheriting from an E1lipse
class and preventing clients from creating any ellipse instance that does not have
equal proportions. This violates the LSP because clients that use an E11ipse base
class can set the height to be different from the width, and introducing a circle
subclass would eliminate this possibility:

Ellipse ellipse = getEllipse();

// Not possible if ellipse 1is an instance of Circle
ellipse.setWidthAndHeight (100, 200);

How to avoid the Circle—Ellipse problem in practice will, as usual, depend on the
context. In some cases, it may not be necessary to have a type circle in the first
place. For example, in a drawing editor, user interface features could be responsible
for assisting users in creating ellipses that happen to be circles, while still storing
these as instances of E11ipse internally. In cases where a type Circle can be useful,
it might make sense to have different Circle and E11ipse classes that are siblings
in the type hierarchy, etc.

Subclasses That Are Not Proper Subtypes
Inheritance accomplishes two things (see Section 7.2):

It reuses the class member declarations of the base class as part of the definition
of the subclass;

* It introduces a subtype—supertype relation between the subclass and the super-
class. In other words, a class should extend a base class only if there is an “is—a”
relationship between the concepts represented by the two classes.

To use inheritance properly, it has to make sense for the subclass to need both of
these features. A common abuse of inheritance is to employ it only for reuse, and
overlook the fact that there is no sensible “is—a” relation between the classes.

Some well-known acknowledged violations of this principle include the library
type stack (which inappropriately inherits from vector), and Properties (which
inappropriately inherits from Hashtable). When subtyping is not appropriate, com-
position should be used.
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Code Exploration: JetUML - NodeRenderer class hierarchy
Calling methods within the class hierarchy.

The Edge class hierarchy discussed earlier provides a rich illustration of field
inheritance. In contrast, the NodeRenderer hierarchy provides many inter-
esting examples of method inheritance. In JetUML, renderers are objects
that compute the position and look of diagram elements. The methods of the
NodeRenderer interface include services that have to do with the geometry
of the nodes, such as draw, getBounds, getConnectionPoint, €tc.

Let us start our study of the NodeRenderer hierarchy at the top, with a
look at AbstractNodeRenderer. First, the class does not provide an imple-
mentation for the interface method draw. This is consistent with the use of an
abstract class, because it would be meaningless to draw something that is not
concrete.

The design of classes TypeNodeRenderer and InterfaceNodeRenderer
illustrates the extent to which inheritance supports code reuse. The renderer
classes are used to depict class and interface nodes in a class diagram. The
code is not simple as it must handle different geometries depending on
whether the nodes have attributes or methods. At the same time, the only
visual difference between types and interface nodes is that interface nodes in-
clude the «interface» UML stereotype in their name. To support code reuse,
TypeNodeRenderer defines a protected placeholder method getNameText to
get the name of the node, with a default implementation to use the node’s
name as text. The subclass InterfaceNodeRenderer then overrides this
method to add the interface stereotype to the text, and inherits the complete
viewing machinery from its superclass.

Insights

This chapter introduced inheritance as a mechanism to support code reuse and ex-
tensibility.

* Use inheritance to factor out implementation that is common among subtypes of
a given root type and avoid DUPLICATED CODET;

e UML class diagrams are useful to capture inheritance-related design decisions;

» To the extent possible, use the services provided by a subclass through polymor-
phism, to avoid the error-prone practice of downcasting;

* Even in the presence of inheritance, consider keeping field declarations private
to the extent possible, as this ensures tighter encapsulation;

* Subclasses should be designed to complement, or specialize, the functionality
provided by a base class, as opposed to redefining completely different behavior;
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* Use the eoverride annotation to avoid hard-to-find errors when defining over-
riding relations between methods;

* Because it can easily lead to code that is difficult to understand, keep overloading
to a minimum. Overloading is best avoided altogether when the parameter types
of the different versions of a method are in a subtyping relation with each other;

* Inheritance- and composition-based approaches are often viable alternative when
looking for a design solution. When exploring inheritance-based solutions, con-
sider whether composition might not be better;

* You can use Java’s cloning mechanism to implement polymorphic copying when
the fields of the superclass are not accessible. However, cloning is a complex and
error-prone mechanism that must be used very carefully;

» Ensure that subclasses that extend a base class can also be considered meaningful
subtypes of the base class, namely that instances of the subclass are in a “is-a”
relation with the base class;

* Ensure that any inheritance-based design respects the Liskov Substitution Princi-
ple. In particular, do not use inheritance to restrict the features of the base class;

* If some of the fields and methods that can be isolated through inheritance do not
add up to a data structure that it makes sense to instantiate, encapsulate them in
an abstract class;

* Consider using the TEMPLATE METHOD pattern in cases where an algorithm applies
to all subclasses of a certain base class, except for some steps of the algorithm
that must vary from subclass to subclass; Some of the steps can be specified as
abstract methods in an abstract base class.

 If there is no scenario for overriding a method, consider declaring it final. Sim-
ilarly, if there is no specific reason for a class to be extensible using inheritance,
consider declaring it final.

Further Reading

The Java Tutorial [11] has a section on interfaces and inheritance that provides com-
plementary material on inheritance, with a focus on the programming language as-
pects. In terms of design guidelines, Chapter 4 of Effective Java [2], titled Classes
and Interfaces, provides many items of guidance relevant to this chapter. Examples
include Item 15, Minimize the accessibility of classes and members, Item 18, Favor
composition over inheritance, and Item 19, Design and document for inheritance or
else prohibit it. Additional items relevant to this chapter include Item 13, Override
clone judiciously, and Item 52, Use overloading judiciously.
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Chapter 8
Inversion of Control

Concepts and Principles: Application framework, callback, event han-
dling, graphical user interface (GUI), inversion of control, model-view—
controller (MVC) decomposition;

Patterns and Antipatterns: PAIRWISE DEPENDENCIEST, OBSERVER, VISI-
TOR.

Inversion of control involves reversing the usual flow of control from caller code
to called code to achieve separation of concerns and loose coupling. It allows us to
build sophisticated applications while keeping the overall design complexity down
to a manageable level. One of the main realizations of the principle takes the form
of the OBSERVER pattern. This pattern is pervasive in software development, and it
is realized by most graphical user interface toolkits on most software development
platforms, from desktop to web to mobile applications.

Design Context

Inversion of control brings the level of discussion to a higher level of abstraction that
needs to consider the design of an entire application. To be able to focus on the issue
of inversion of control, this chapter introduces new design contexts. The context
used as a running example for part of the chapter is that of a small application
to allow the user to select and view a number in different formats (for example,
digits vs. text). A different context, of an observable stack of cards, is introduced
in Section 8.4 to provide an additional example. I return to the design of recursive
card source structures seen in previous chapters to introduce the VisiTor pattern in
Section 8.8.
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194 8 Inversion of Control

8.1 Motivating Inversion of Control

One situation that motivates inversion of control in software design is when a num-
ber of stateful objects need to be kept consistent. An example from the programming
domain itself is an integrated development environment which presents different
views of the source code. In Eclipse, for example, the Package Explorer and Outline
views shows the structure of a class that can also be viewed in the source code edi-
tor (see Figure 8.1). If a user changes the class declaration, for example by adding a
field in the source code editor, this change is immediately reflected in all the differ-
ent views. Likewise, if the user reorders the method declarations in the Outline view,
the new order of method declarations is reflected in the source code editor. Hence,
we could say that the problem we are trying to solve is one of synchronization,'
where we are trying to keep different objects consistent with each other.

[% Package.. 2 = B [ Cardjava 2 > = B | 5= Outline 52 = 8
= : ‘ - . public final class Card A B laz \ \5 o W
v # Ea‘.rncgill..cs.stg.solitaire,cards A // Indexed by suit, then rank -
v 5 é;rd.;ava private static final Card[][] 1 ca.mcgill.cs.stg.solitaire. A
v EFNZARDS Create the flyweight object v Bl
eate the flyweight obje Y -
& () ® static[] DJQ (CARDS -eralt
g o e {.}
G'D get(Ral.nk, 5“'9 -ard private final Rank aRank; o F aRank: Rank
GF Q:(SE"“Q) ard private final Suit aSuit; o F aSuit: Suit
o aRan c =
Card(Rank, Suit]
o aSuit private Card(Rank pRank, Suit m _ Card(Rank Suit)

@ ° get(Rank, Suit) : Car
& Card(Rank, Suit) get(Rank, Suit)

. Chrinm aRank = pRank; e get(String) : Card
) getIDStrlng(ﬁ)b; ring asuit = pSuits o getRank(: Rarl
vy 7“: : e } @ getiDString() : Strinc
@ getSuit() : Suit L v e v
@ toString() : String < > < >

Fig. 8.1 Three different views of the source code in Eclipse

To isolate the issue of view synchronization, I distilled the design problem into
a toy application called LuckyNumber. The application allows a user to select a
number (presumed to be lucky) between 1 and 10 inclusively. The interesting part
of the application, however, is that users can select their lucky number in different
ways, for example by entering the digit(s) that represent the number, typing out the
name of the number in English, or selecting it from a slider (see Figure 8.2).

In the application, each horizontal panel allows the user to view the number in a
specific way, but also to change the number. If the number is changed in one panel,
the change is immediately reflected in all other panels. In addition to its current
features, one requirement for this application is that it can be extended to accommo-
date any additional type of view. For example, old-fashioned users may request the
option to select their number using Roman numerals, geeky users may want to use
binary notation, etc.

1 The term synchronization has a different meaning in the context of concurrent programming, a
topic that is outside the scope of this book.
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Fig. 8.2 Screenshot of the
LuckyNumber application
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B ' Lucky Numb...
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A consequence of implementing this functionality naively is to be left with com-
plete PAIRWISE DEPENDENCIEST. With PAIRWISE DEPENDENCIEST, wWhenever the user
changes the number in a panel, this panel directly contacts all other panels and up-
dates their view of the number. Figure 8.3 illustrates these dependencies in a class
diagram.

Fig. 8.3 Example of PAIRWISE
DEPENDENCIES

—  SliderPanel

IntegerPanel v/

T

TextPanel

This design suffers from at least the following two related limitations:

e High coupling: Each panel explicitly depends on many other panels. Panels
could be of different types and require different types of interactions. For ex-
ample, to update the number it may be necessary to call setDigit on one panel
and setslidervalue on a different panel.

* Low extensibility: To add or remove a panel, it is necessary to modify all other
panels. For example, to remove the slider panel, it would be necessary to modify
all other panels to remove the statements that update the slider panel. Similarly,
to add a Roman numeral panel, it would be necessary to change every panel to
add some statements to manage the new panel, etc.

What is even worse, is that the impact of these issues increases quadratically with
the number of panels, given that there are n- (n — 1) directed edges in a complete
graph with n vertices. In the initial application with three panels, we need six de-
pendencies to keep all panels synchronized. This may not seem like much, but if
we throw in panel for Roman numerals and one for numbers in binary notation, for
a total of five, then we need 20 dependencies scattered over five components, just
to keep a single number consistent. This is poor separation of concerns, because
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a significant amount of code will be required to manage the dependencies that is
likely to end up tangled with code that more directly supports the required logic
(e.g., adjusting a slider). The code will also be less understandable, harder to test,
etc.

8.2 The Model-View—Controller Decomposition

One way out of using complete pairwise dependencies to synchronize multiple rep-
resentations of the same data is to separate abstractions responsible for storing
data from abstractions responsible for viewing data, from abstractions responsible
for changing data. This key insight is generally known as Model-View—Controller
(MVC) from the name of the three abstractions. The Model is the abstraction that
keeps the unique copy of the data of interest. In our simple context, that would be
the lucky number. The View is, not surprisingly, the abstraction that represents one
view of the data. Generally in a MVC decomposition there can be more than one
view of the same model. This is illustrated in the LuckyNumber application by the
presence of different views for something as simple as a single integer. Finally, the
Controller is the abstraction of the functionality necessary to change the data stored
in the model.

The origin of the MVC is somewhat obscure. The idea can be traced back to the
late 1970s and Xerox PARC researchers working on Smalltalk software, but there is
little besides a few memos in terms of written reports on the original development of
the concept. Currently, the term MVC is used fairly loosely. Some software devel-
opers refer to it as a design pattern. Others refer to it as something slightly different
called an architectural pattern or architectural style (somewhat like a design pat-
tern, but at a higher level of design abstraction). Some refer to it simply as a general
concept. Finally, some web technology platforms use the terms model, view, and
controller to refer to specific software components. Because I see the main benefit
of the Model-View—Controller as a guideline to separate concerns, I think of it sim-
ply as a decomposition (of concerns). In this sense, it is more general than a design
pattern, because it does not include a solution template that is specific enough to
apply directly.

The lack of a well-defined solution template for the MVC means that there is
little guidance on how to realize the idea in practice. This also means that there
are innumerable ways to go about separating the model, view, and controller in a
design context. For example, the model could be a single object, or a collection of
objects. The view and controller could be different objects, or fused together. In the
latter case, the separation of concerns would be organized along the interfaces of
objects rather than the objects themselves (see Section 3.9 on the idea of interface
segregation).

Such a vague concept as the MV C is not easy to grasp in itself at first. Fortunately,
there exists a related idea that is much more concrete, namely the OBSERVER pattern.
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8.3 The OBSERVER Design Pattern

The central idea of the OBSERVER pattern is to store data of interest in a dedicated
object, and to allow other objects to observe this data. The object that stores the
data of interest is called, alternatively, the subject, model, or observable, and it cor-
responds to the Model abstraction in the Model-View—Controller decomposition.
For this reason, the context for the OBSERVER pattern corresponds to the motivation
discussed in Section 8.1: we want a simple way to manage multiple objects that
must be aware of state changes in the same data. The class diagram of Figure 8.4
illustrates how this is realized for the LuckyNumber application.

Model

- aNumber:int

aObservers * i
+ addObserver(Observer):void cinterface»

+ removeObserver(Observer):void
+ getNumber():int ~
+setNumber(int):void [ el I

Observer

IntegerPanel SliderPanel TextPanel

Fig. 8.4 Application of the OBservER to the LuckyNumber application

In this situation, the object in charge of keeping the data is an instance of Mode1,
which keeps track of a single integer and allows clients to query and change this
integer.

Linking Model and Observers

Where things become interesting is that the Mode1 class also includes an aggregation
to an Observer interface, with methods to add and remove Observer instances
from its collection. This process is called registering and deregistering observers.
The mechanism for managing observers can be trivially implemented, for example:

public class Model {
private int aNumber = 5;
private List<Observer> aObservers = new ArrayList<>();

public void addObserver (Observer pObserver) {
aObservers.add (pObserver) ;

}

public void removeObserver (Observer pObserver) {
aObservers.remove (pObserver) ;

}
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Classes that define objects that need to observe the model must then declare to
implement the Observer interface:

class IntegerPanel implements Observer { /# ... #/ }

Through polymorphism, we thus achieve loose coupling between the model and
its observers. Specifically:

¢ The model can be used without any observer;

e The model is aware that it can be observed, but its implementation does not
depend on any concrete observer class;

e Ttis possible to register and deregister observers at run time.

Control Flow Between Model and Observers

A first key question about the relation between a model an its observers is, how do
the observers learn that there is a change in the state of the model that they need
to know about? The answer is that whenever there is a change in the model’s state
worth reporting to observers, the model should let the observers know by calling a
certain method on them. This method has to be defined on the Observer interface
and is usually called a callback (method) because of the inversion of control that it
implies. We talk of inversion of control because, to find out information from the
model, the observers do not call a method on the model, they instead wait for the
model to call them (back). This procedure is often referred to as the Hollywood
Principle (“don’t call us, we’ll call you™). That is also why the method that is called
by the model on the observer is called a callback. Continuing with the movie in-
dustry metaphor, the name of the method to call back is like the phone number
of the prospective actor. If the casting director determines that the actor should be
auditioned, they will call the number. Likewise, if the model determines that the
observers should be notified, it will call their callback method.

In the case of the LuckyNumber application, an appropriate name for the call-
back method would be newNumber, given that this is the method that will be called
whenever the model needs to inform its observers that it has changed the number it
is storing. We thus define this method in the observer interface:
public interface Observer {

void newNumber (int pNumber) ;

}

When first learning about callbacks, their logic can be a bit puzzling, especially
if the name of the callback is ambiguous. In the case above, it may look like the
method is intended to set a new number on an observer, because it would be called
like this:

someObserver.newNumber (5) ;

However, the method name should not be mentally read as “set number to this new
value”, but rather as “the model has a new number, here it is”. In other words, a
callback is not to tell observers what to do, but rather to inform observers about
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some change in the model, and let them deal with it as they see fit (through the
logic provided in the callback). The analogy with the movie studio still works. If an
actor (the observer) gets an audition, the studio might call them and say “you have
an audition”, without specifying the details of how to react to this information (for
example, by preparing, arranging transportation, etc.). The lesson here is that to help
others understand a design, it is a good practice to name callback methods with a
name that describes a state-change situation, as opposed to a command. In our case,
other suitable names for the callback method would include numberselected and
numberChanged.

Once we have a callback defined, within class Model, we can create a helper
method, called a notification method” that will notify all observers and provide them
with the number they should know about:

public class Model {
private void notifyObservers () {
for (Observer observer : aObservers) {
observer.newNumber (aNumber) ;

To ensure that the model dutifully notifies observers whenever a state change
occurs, two strategies are possible:

e A call to the notification method must be inserted in every state-changing
method; in this case the method can be declared private;

* Clear documentation has to be provided to direct users of the model class to call
the notification method whenever the model should inform observers. In this case
the notification methods needs to be non-private.

As usual, which strategy is preferable depends on the context. In cases where no-
tifications can be issued for every model change, the first method provides a simpler
life cycle for the state of the model. However, in certain cases, notifying observers
with every state change may lead to some performance problems. For example, if
we had a model that could be initialized with a large collection of data items by
adding each item one at a time, notifying observers after each individual addition
may dramatically degrade the performance while providing no benefit. In situations
such as this one, it may be better to change the model silently (without notifying the
observers), and then trigger a notification once the batch operation is done. In cases
where such flexibility is needed, the second strategy can provide it.

The sequence diagram of Figure 8.5 illustrates what happens when we change
the number on the LuckyNumber application using the first strategy.

Inside the state-changing method setNumber (int), we added a call to notify-
Observers to loop through each observer and call the method newNumber on each.
The implementation of the newNumber callback dictates how each observer reacts
to the change in state. In the case of the LuckyNumber application, each observer

2 In Java the notification method cannot be called simply notify (), because a legacy method with
this name is already defined in class object.
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client: :Model :TextPanel :SliderPanel :IntegerPanel

setNumber(5)

notifyObservers()
newNumber(5 :

newNumbe'r(S)

________________________________ )

newNumber(5)

———

Fig. 8.5 Call sequence for the OBSERVER

deals with the callback in a different way. For example, the IntegerPanel sets
the number of the integer in a text field; the TextPanel looks up the name of the
integer in an array, and sets the value of the text field to that string; the s1iderPanel
positions the slider to correspond to the value, etc.

Data Flow between Model and Observers

The second key question about the relation between a model and its observers is,
how do the observers access the information that they need to know about from the
model? Two main strategies are available. The first strategy is to make the informa-
tion of interest available through one or more parameters of the callback method.
This strategy is also known as the push data-flow strategy because the model is
explicitly pushing data of a pre-determined structure to the observers.

Applying this strategy to our context, we could define the callback method to
include a parameter that represents the number most recently stored in the model.
This is the strategy that I illustrated above with the newNumber (int) callback.

public interface Observer {
void newNumber (int pNumber) ;

}

This way, whenever a callback method is called on an observer, the implementa-
tion of the callback can obtain the value of interest from the argument bound to the
parameter. For example, relevant parts of the implementation of the IntegerPanel
would look like this:



8.3 The OBSERVER Design Pattern 201

public class IntegerPanel implements Observer {
// User interface element that represents a text field
private TextField aText = new TextField();

VA IR V4
public void newNumber (int pNumber) {

aText .setText (Integer.toString (pNumber)) ;
}

This strategy makes one major assumption: that we know in advance what type of
data from the model the observers will require. In our case, this strategy is a good fit
because there is nothing but a single integer that observers could require. However,
this is not the general case. For example, we could enhance the model to remember
each lucky number ever selected, and the timestamp of its selection. Observers now
have more data to choose from. Given the context, we could still assume that the
most common case for an observer will be to show the most recent number, but more
sophisticated observers might want to show the last three numbers, for example, or
the amount of time a certain number remained selected.

As another example, let us say that we want to make the Deck class discussed in
previous chapters into an observable object. What would observers be interested in?
Again, one usage scenario stands out: to show the card drawn. So we could fix this
expectation with the callback:

public interface DeckObserver {
void cardDrawn (Card pCard) ;

}

However, in some cases this might be too strict. Some observers might be interested
in the number of cards left in the deck, or they may want to know about the top card,
etc.

A more flexible strategy is instead to let observers pull the data they want from
the model using query methods defined on the model. Appropriately, this approach
is known as the pull data-flow strategy. To convert the design of the LuckyNumber
application to use the pull strategy, we could exchange the pNumber parameter with
one that would refer to the entire model:

public interface Observer ({
void newNumber (Model pModel);
}

That way, the data to put in the text field must be obtained from the model:

public class IntegerView implements Observer ({
// User interface element that represents a text field
private TextField aText = new TextField();

VA
public void newNumber (Model pModel) {

aText .setText (Integer.toString (pModel.getNumber ()));
}
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Now, any data available through the methods of class Model also becomes avail-
able to the observers. To implement the pull data flow strategy, observers must have
a reference to the model, but this reference must not necessarily be provided as an
argument to the callback method. Another option is to initialize observer objects
with a reference to the model (stored as a field), and refer to that field as necessary.
This design is illustrated in the class diagram of Figure 8.6. That design makes it
clear that the reference to the model is obtained through the constructor.

«interface»
Model * Observer
- aNumber:int newNumber():void

T A
+ setNumber(int):void '

+ getNumber():int aModel
- notifyObservers():void

IntegerPanel

IntegerPanel(Model)

Fig. 8.6 Class diagram of LuckyNumber as a model using the pull data-flow strategy for observers

At first glance, it may look like the pull data-flow strategy introduces a circular
dependency between a model and its observers, given that both depend on each
other. However, the crucial difference is that, in this design, the model does not
know the concrete type of its observers. Through interface segregation, the only
slice of behavior that the model needs from observers is specified through their
callback method. This being said, one of the main drawbacks of the pull data-flow
strategy is that it does, indeed, increase the coupling between observers and model.
In the design of Figure 8.6, observers can not only call getNumber (), they can
also call setNumber (int). In other words, by holding a reference to the model,
observers have access to much more of the interface of the model than they need.
Fortunately, we saw how to deal with this situation with the Interface Segregation
Principle (ISP, see Section 3.2). To apply ISP to our design, we could create a new
interface ModelData that only includes the getter methods for the model, and only
refer to this type in the observers. Figure 8.7 illustrates this solution.

Although I presented them here separately, the push and pull strategies can be
combined. For example, it is possible to specify a callback that includes a param-
eter for both data about the change of state in the model and a reference back to
the model. This design would not be very useful in our scenario, but I include its
implementation for the sake of illustration:

public interface Observer {
void newNumber (int pNumber, ModelData pModel) ;
}

In general, supporting both strategies can help increase the reusability of the
Observer interface at the cost of a more complex design that may include situations
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«interface»
ModelData IntegerPanel
—<
getNumber():int IntegerPanel(ModelData)
.
Model \v4
- aNumber:int «interface»
i ~ " Observer
+ setNumber(int):void -
+ getNumber()int newNumber():void

- notifyObservers():void

Fig. 8.7 Class diagram of the pull method with ISP

where one parameter is not used.> At the other extreme, for simple design contexts it
may be the case that the only information that needs to flow between the model and
the observers is the fact that a given callback method was invoked. In such cases,
neither the push nor the pull strategy is required: receiving the callback invocation
is enough information for the observers to do their job. An observer that serves as a
counter of a type of event would be one example.

As a final remark regarding the flow of data between the model and its observers,
it is worth noting that in the examples above, none of the callback methods return
any value (i.e., they declare to return void). This is not a design decision, but a con-
straint of the pattern. Because the model is supposed to ignore how many observers
it has, it can be tricky for observers to attempt to manage the model by returning
some value. Technically, it is possible to declare the return type of callbacks to be
non-void, and to aggregate the results across many invocations. For example, one
could design the callback to return true if it somehow succeeded in responding to
the callback (and false otherwise), and have the model apply a logical operator to
the results. Such schemes represent uncommon and possibly fragile applications of
the pattern. When starting out with the OBSERVER, my recommendation is to have
callbacks return void.

Event-Based Programming

One way to think about callback methods is as events, with the model being the event
source and the observers being the event handlers. Within this paradigm, the model
generates a series of events that correspond to different state changes of interest,
and other objects are in charge of reacting to these events. What events correspond
to in practice are simply method calls. Thinking about observers as event handlers
helps realize that we actually have a lot of flexibility when designing callbacks. In

3 The Java library includes a pair of types, Observable and Observer, where observer defines the
single callback void update (Observable, Object), which supports both data-flow strategies.
These types are, however, deprecated since Java 9.
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the LuckyNumber application, the design to date has involved a single callback,
newNumber. However, for the sake of discussion, we can imagine a situation where
a Model might be used by observers that are sometimes interested only if the lucky
number increased (or, conversely, decreased), or whether the number is set to its
maximum or minimum value. Implementing this feature in the current design would
be difficult: every observer would have to store a copy of the number, and check it
against the new number to determine if it has increased or decreased, in addition to
checking for maximum or minimum value. We can do things differently by adjusting
the design of the callbacks to explicitly capture the events of potential interest:

public interface Observer ({
void numberIncreased (int pNumber) ;
void numberDecreased (int pNumber) ;
void numberSetToMax (int pNumber) ;
void numberSetToMin (int pNumber) ;

With this design, observers do not need to store a copy of the old number, and
they can be notified of precisely the event they are interested in.* In cases where an
observer does not need to react to an event, the unused callbacks can be implemented
as empty (do-nothing) methods. In the class below, it is assumed that the events are
mutually exclusive, namely that the event numberIncreased means increased but
not to the maximum value, and similarly for numberDecreased.

public class IncreaseDetector implements Observer {
public void numberIncreased(int pNumber) {
System.out.println("Increased to " + pNumber);
}
public void numberDecreased (int pNumber) {}
public void numberSetToMax (int pNumber) {}
public void numberSetToMin (int pNumber) {}

If the reliance on empty methods occurs too often, it is possible to implement
these empty methods in a class and inherit from it instead. Such classes are some-
times called adapters:
public class ObserverAdapter implements Observer {

public void numberIncreased (int pNumber) {}

public void numberDecreased(int pNumber) {}

public void numberSetToMax (int pNumber) {}

public void numberSetToMin (int pNumber) ({}

With an adapter, the do-nothing behavior becomes inherited, and observers can
override only the subset of callbacks that correspond to the events they need to
respond to:

4 Whether we need the parameter for the numberSet ToMax and numberSet ToMin methods depends
on the context, that is, whether the minimum and maximum values are known globally.
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public class IncreaseDetector extends ObserverAdapter {
public void numberIncreased(int pNumber) {
System.out.println("Increased to " + pNumber);

}

In the current scenario, I defined class ObserveraAdapter to make the concept of
an adapter class more explicit. However, in Java version 8 and later, the same benefit
can be accomplished using default methods in interfaces.
public interface Observer {

default void numberIncreased(int pNumber) ({}

// etc.

The use of default methods for this purpose not only makes the code more com-
pact, it also enables the concrete observer to inherit from a different class if neces-
sary.

In some cases, extensive use of empty methods might point to a mismatch be-
tween the varied needs of observers and the design of the callbacks. Again, it is
possible to rely on the Interface Segregation Principle to clean things up. In our sit-
uation, we could define two observer interfaces that correspond to more specialized
event handlers. For example:
public interface ChangeObserver {

void numberIncreased(int pNumber);

void numberDecreased (int pNumber) ;

}

public interface BoundsReachedObserver {
void numberSetToMax (int pNumber) ;
void numberSetToMin (int pNumber) ;

With two abstract observers, concrete observers can be more targeted and only
register for the sets of events they need to respond to. The trade-off for more flexibil-
ity is a slightly heavier interface for the Model class, because it now has to support
two lists of observers with their corresponding registration methods.

Summary of the Pattern

The context for using the OBSERVER is fairly rich: it involves situations where many
objects should be able to observe some data, and become aware of changes to the
state of this data, while minimizing the coupling between the data and the observers
of that data. Given a class that represents the data (the model), the solution template
for the pattern involves making objects of this class observable by aggregating a
number of abstract observers (usually defined with an interface). The following are
important variation points when applying the OBSERVER:

e What callbacks methods to define on an abstract observer. An abstract observer
can have any number of callbacks that can correspond to different types of events;



206 8 Inversion of Control

* What data flow strategy to use to move data between the model and observers
(push, pull, none, or both);

*  Whether to use a single abstract observer or multiple ones. Multiple abstract ob-
servers with different combinations of callbacks give observers more flexibility
to respond to certain events or not;

* How to connect observers with the model if observers need to query or control
the model. Here the use of the Interface Segregation Principle is recommended;

e Whether to include a notification helper method and, if so, whether to make this
method private or not. If non-private, clients with references to the model get to
control when notifications are issued. If private, it is assumed that the method is
called at appropriate places in the state-changing methods of the model.

The listing below shows the complete code of the Model and Observer type
declarations for the variant that uses the push data-flow strategy.

public interface Observer {
void newNumber (int pNumber) ;

}

public class Model {
private List<Observer> aObservers = new ArrayList<>();
private int aNumber = 5;

public void addObserver (Observer pObserver) {
aObservers.add (pObserver) ;

}

public void removeObserver (Observer pObserver) {
alObservers.remove (pObserver) ;

}

private void notifyObservers () {
for (Observer observer : aObservers) {
observer.newNumber (aNumber) ;

}

public void setNumber (int pNumber) {
if (pNumber <= 0) {
aNumber = 1;
}
else if (pNumber > 10) {
aNumber = 10;
}
else {
aNumber = pNumber;
}

notifyObservers();
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Code Exploration: Solitaire - GameModel

Application of the OBSERVER with pull data flow and a single parameterless
callback.

Class GameMode1 in the Solitaire application captures the complete state of a
game in progress. This class is an observable subject, as it maintains a list of
GameModelListener instances. Interface GameModelListeners, the abstract
observer, contains a single, parameterless callback: gameStateChanged ().
Concrete observers are thus responsible for obtaining their own reference to
the game model and pulling the information they need using query methods.
These query methods are collected within interface GameMode1Vview. For this
application of the pattern, I chose the pull data flow strategy because of the
large variety of information required from the model. I chose to store a ref-
erence to the model within observers instead of passing this reference via the
callback because some observers need this reference to initialize themselves.

8.4 Applying the OBSERVER Design Pattern

The design space for applying the OBSERVER is extensive. Even in a small, well-
defined context, many alternatives are possible for designing the observer and ob-
servable types. To illustrate some of the options available and their corresponding
trade-offs, let us now explore different designs for an observable version of the
Cardstack class introduced in Section 6.1.

The cardstack class provides an implementation of the stack abstract data type
specialized for card objects. Figure 8.8 summarizes the definition of the class. With
this design, it is only possible to find out about the state of a cardstack in the
traditional way, by querying it via methods of its interface: peek (), isEmpty (), and
via its iterator. Let us now assume that other objects may want to observe instances
of this class. When applying the OBSERVER, we usually wish to make the design
general enough to accommodate an open-ended variety of observers. However, to
make the discussion more concrete I will consider two sample observers:

* A counter, which reports the number of cards in the stack at any point, and detects
when the last card has been popped;
* An ace detector, which detects whether an ace is added to the stack at any point.

Basic design with Push Data-Flow

The simplest design I can think of for making the cardstack observable is to in-
troduce one abstract observer with three callbacks, one per state-changing method.
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CardStack
«interface» push(Card): void
Iterable<Card> pop(): Card aCards *
(-1 peek(): Card o Card
iterator(): Iterator<Card> clear(): void
isEmpty(): boolean
iterator(): lterator<Card>

Fig. 8.8 The cardstack class

Figure 8.9 shows the relevant design elements, including classes for the two required
concrete observers.

CardStack «interface»
CardStackObserver

attach(CardStackObserver): void a:Observers

push(Card): void pushed(Card): void

pop(): Card popped(Card): void

clear(): void cleared(): void

o
Counter AceDetector

Fig. 8.9 The cardstack with basic OBSERVER support

In addition to the introduction of the new cardStackObserver interface, the
required code changes include the modification of cardstack to manage the list of
observers, as well as notify them of state changes:

public class CardStack implements Iterable<Card> {
private final List<Card> aCards = new ArraylList<>();
private final List<CardStackObserver> aObservers =
new ArrayList<>();

public void attach(CardStackObserver pObserver) {
aObservers.add (pObserver) ;

public void push (Card pCard) {
assert pCard != null && !aCards.contains (pCard);
aCards.add (pCard) ;
for (CardStackObserver observer : aObservers) {
observer.pushed (pCard) ;

}
// Likewise for pop() and clear()
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As for the observers, their implementation reveals some of the limitations of this
design. For the AceDetector, we are only really interested in one event, and must
therefore provide two empty callback implementations:
public class AceDetector implements CardStackObserver {

public void pushed(Card pCard) {

if (pCard.rank() == Rank.ACE) {
System.out.println ("Ace detected!");

public void popped(Card pCard) {}

public void cleared() {}
}

The implementation of Counter surfaces a different problem. Because there is
no way to obtain the number of cards in the stack from the information passed via
the callback, it is necessary to either retain a reference to the card stack, or duplicate
part of its state. For the sake of discussion, I will leave the observer decoupled from
the observable, and accumulate state within the observer:

public class Counter implements CardStackObserver {
private int aCount = 0;

public void pushed(Card pCard) {
aCount++;
System.out.println ("PUSH Counter=" + aCount);

public void popped(Card pCard) {
aCount——;
System.out.println ("POP Counter=" + aCount);
if (aCount == 0) {
System.out.println ("Last card popped!");

public void cleared() {
aCount = 0;
System.out.println ("CLEAR Counter=" + aCount);

In addition to replicating state, this solution suffers from the problem that it will
only function correctly if the observer is attached to an empty Cardstack. While
this additional constraint may be acceptable in some contexts, it does make the
design more brittle.

Design with Inheritance

The solution sketched above fuses the application of the observer pattern to the im-
plementation of CardStack, thereby coupling client code with the observer machin-
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ery (the attach method and observer notification) even when it is not needed. An
approach that yields more flexibility is to use inheritance to provide an observable
extension to cardstack. The left side of Figure 8.10 captures this decomposition.

«interface»
Iterable<Card>

iterator(): lterator<Card> .
«interface»
- CardStackObserver
‘ pushed(Card): void
CardStack
ardstac popped(Card): void
push(Card): void cleared(): void
pop(): Card AN
clear(): void i
Zr aObservers f
ObservableCardStack CardStackObserverAdapter
attach(CardStackObserver): void

push(Card): void
pop(): Card
clear(): void

Counter AceDetector

Fig. 8.10 The observableCardstack with inheritance

With this design, client code that only requires the plain Cardstack can refer
to the original version, and clients that require an observable one can instantiate
the subclass instead. The ObservableCardStack subclass reuses all the original
state-changing methods, but also overrides them to add the observer notification.
For example, for pop () :

public class ObservableCardStack extends CardStack {
VI V4
public Card pop () {
Card popped = super.pop();
for (CardStackObserver observer : aObservers) {
observer.popped (popped) ;
}
return popped;

While we are at it, we can also leverage inheritance to solve the problem that we
may need to provide empty callback implementations in some observers (such as
AceDetector). As illustrated on the right side of Figure 8.10, we can provide an
adapter class for the observer interface. The class CardStackObserverAdapter
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provides empty implementations for all callbacks. By inheriting from the adapter,
observers only need to provide an implementation for the relevant callbacks.’

Design with Pull Data-Flow

Let us now try out an implementation with a pull data-flow strategy. With this al-
ternative, we want to allow observers to pull (fetch) the data they need from the
observable card stack, while maintaining a minimal amount of coupling between
the observers and their subject. For this purpose, we will use the Interface Segre-
gation Principle (see Section 3.9) and define a new interface that declares only the
state-querying methods of cardstack. The new interface Cardstackview will al-
low us to have objects that can query the state of a card stack, without being coupled
to state-changing methods such as push or pop, or the observer registration method
(attach). Figure 8.11 illustrates the new design variant.

«interface» «interface»
CardStackView Iterable<Card>
peek(): Card V\\ iterator(): lterator<Card>
isEmpty(): boolean N
AN
«interface»
CardStack

CardStackObserver

push(Card): void
pop(): Card
clear(): void

default pushed(CardStackView): void
default popped(CardStackView): void
default cleared(CardStackView): void

7 x
aObservers i

ObservableCardStack : :

attach(CardStackObserver): void

push(Card): void Counter AceDetector
pop(): Card
clear(): void

Fig. 8.11 The observablecardstack with pull-style data-flow

In this design, the callbacks now take a Cardstackview as parameter. The
impact on the observable is minimal: instead of passing a card as argument, the
ObservableCardStack passes a reference to itself, for example in pop () :

public Card pop () |
Card popped = super.pop();
for (CardStackObserver observer : aObservers) {
observer.popped(this);
}
return popped;
}

3 T used an explicit adapter class to emphasize the inheritance relation. In practice, it would be
preferable to inherit from default methods declared in the interface as described in Event-Based
Programming, Section 8.3.
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The implementation of the observers is more impacted, however. The AceDetec-
tor must now rely on peek () to detect an ace, since there is no longer any infor-
mation available about the card that was just pushed onto the stack:

public void pushed (CardStackView pView) {
if (pView.peek () .rank () == Rank.ACE) {
System.out.println ("Ace detected!");
}

As for the Counter observer, we have an interesting situation. Because the entire
state of the card stack is now accessible, we no longer need to replicate the size of
the stack in a field within counter. However, the Cardstackview does not provide
amethod size () that would allow us to retrieve this size conveniently. Instead, we
would have to iterate every time through all the cards in the stack to get the size.
Two alternatives are to either modify the CardsStack and cardStackview types to
include a size () method, or to implement a helper method within counter. The
trade-off is that in the first case, we widen the interface of the class, possibly for
a rare usage scenario, whereas the second option may prove overly inefficient. For
now, I choose to use a helper method in Counter:

public class Counter implements CardStackObserver ({
private static int size(CardStackView pView) {

int size = 0;
for (Card card : pView) {
size++;

}
return size;

}

public void popped(CardStackView pView) {
System.out.println ("POP Counter=" + size (pView));
if (pView.isEmpty()) {
System.out.println("Last card popped!");
}
}
JE e x/

It is worth noticing that with this solution, the implementation of the Counter is
no longer brittle, as the callbacks will return the correct card count independently of
when the object is attached to its subject ObservableCardstack.

Design with Single Callback and Push/Pull Data-Flow

As our final variant, we will look at a design with only a single callback that sup-
ports both push and pull data-flow strategies. Figure 8.12 shows the changed el-
ements in the solution. With only one callback for multiple kinds of events, the
nature of the event is no longer represented by the name of the method, so I changed
it to the general actionPerformed. We still need a way to distinguish between the
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kinds of events being reported, however. For this purpose, we can introduce a value
that represents the event kind. This role is served by the parameter of enumerated
type Action. To support both push and pull data-flow strategies, I combined the
structures we defined above: a parameter to represent the card involved in the state
change, and a parameter to refer back to the observable structure. While it makes
sense to include a reference to the observable for all kinds of event, the same is not
true for the value we push. For the CLEAR event, there is no card involved in the
event. One solution is to use an Optional to avoid passing null (see Section 4.4).

«interface»
CardStackObserver

«onum» " | actionPerformed(Action, Optional<Card>, CardStackView)

Action ~
PUSH o i ___________
POP 3 3
CLEAR H H

Counter AceDetector

Fig. 8.12 The observablecardstack with dual push/pull-style data-flow

In terms of observer implementation, this solution is more general and flexible
because we can more easily add different kinds of events. The trade-off is that the
observer implementations must do additional checking to see whether the callback
applies to the event. For example, for AceDetector:

public void actionPerformed(Action pAction, Optional<Card> pCard,
CardStackView pView) {
if (pAction == Action.PUSH &&
pView.peek () .rank () == Rank.ACE) {
System.out.println ("Ace detected!");

Unfortunately, for observers that must handle multiple events (such as Counter),
the routing of all events through a single callback is likely to lead to a SwitcH
STATEMENTY as one method needs to handle separate computations:

public void actionPerformed(Action pAction, Optional<Card> pCard,
CardStackView pView) {
switch (pAction) {

case PUSH:
System.out.println ("PUSH Counter=" + size (pView));
break;

case POP: /% ... */

case CLEAR: /# ... #/
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One alternative solution is to maintain three lists of observers in the observable,
one for each type of event. In this case, it would be the observer registration method
that would help route the callback to the suitable observers. For example, a method
onClear (CardStackObserver) would add an observer that only gets notified of
the card stack being cleared, and similarly for the other two types of events.

With just a simple design context, we have already explored many different ways
to apply the OBsERVER. Even then, many implementation variants remain possible.
For example, in some contexts it may make sense to have at most one observer
per event type. When inversion of control is needed, it is thus more important to
carefully consider the requirements of the design context and apply the pattern ac-
cordingly, than to try to employ a predetermined solution template.

Code Exploration: JetUML - UserPreferences

Application of the OBSERVER with push—pull data flow, combined with the SIN-
GLETON.

In JetUML, userPreferences is the class that stores and manages the var-
ious preferences that users can select via the application menus (for ex-
ample, whether to show the grid or not). The class is both a SINGLETON
and a subject in the OBSERVER pattern. The instance of the class manages
three types of preferences, depending on whether they are Boolean, inte-
ger, or string values. In this design, preferences are represented as values
of enumerated types. Let us take BooleanPreference as an example. The
method setBoolean stores the preference value, then notifies all the reg-
istered BooleanPreferenceChangeHandler objects. This design makes it
possible to have completely different parts of the application react to changes
in user preferences without complex chains of method calls. For example,
class DiagramCanvas is a concrete observer of Boolean preference changes.
In its callback, it checks whether the preference that changed is showGrid
and, if so, it repaints the canvas.

8.5 Introduction to Graphical User Interface Development

In many technologies, the code that implements the Graphical User Interface (GUI)
portion of an application makes heavy use of the OBserVER. This section and the
next two are an introduction to GUI development that serves the dual purpose of in-
troducing the concept of an application framework and reinforcing knowledge of the
OBSERVER pattern through its application in a new context. This part of the chapter
is based on JavaFX, an extensive GUI framework for the Java language. However,
the general concepts presented here apply to other GUI development frameworks.
Conceptually, the code that makes up a GUI application is split into two parts:
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¢ The framework code consists of a component library and an application skele-
ton. The component library is a collection of reusable types and interfaces that
implement typical GUI functionality: buttons, windows, etc. The application
skeleton is a GUI application that takes care of all the inevitable low-level as-
pects of GUI applications, and in particular monitoring events triggered by input
devices and displaying objects on the screen. By itself, the application skeleton
does not do anything visible: it must be extended and customized with applica-
tion code.

» The application code consists of the code written by GUI developers to extend
and customize the application skeleton so that it provides the required user inter-
face functionality.

A GUI application does not execute the same way as the script-like applications
we write when learning to program. In such programs, the code executes sequen-
tially from the first statement of the application entry point (the main method in
Java) and the flow of control is entirely dictated by the application code. With GUI
frameworks, the application must be started by launching the framework using a
special library method. The framework then starts an event loop that continually
monitors the system for input from user interface devices. Throughout the execution
of the GUI application, the framework remains in control of calling the application
code. The application code, written by the GUI developers, only get executed at
specific points, in response to calls by the framework. This process is thus a clear
example of inversion of control. Application code does not tell the framework what
to do: it waits for the framework to call it.

Figure 8.13 illustrates the essence of the relation between the LuckyNumber ap-
plication and the JavaFX framework. The class diagram shows how the application
code defines a LuckyNumber class that inherits from the framework’s Application
class. To launch the framework, the following code is used:

Fig. 8.13 Relation between ﬁ
application and framework Framework

code for the LuckyNumber
application

Application

+ launch(String[]):void
+ start(Stage):void

Application

LuckyNumber

+ main(String[]):void
+ start(Stage):void
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public class LuckyNumber extends Application {
public static void main (String[] pArgs) {
launch (pArgs) ;
}

@Override

public void start (Stage pPrimaryStage) {
JE . xS/

}

This code calls the static method Application.launch, which launches the
GUI framework, instantiates class LuckyNumber and then executes method start ()
on this instance.® With this setup, class LuckyNumber is effectively used as the con-
nection point between the application code used to extend the GUI and the frame-
work code in charge of running the show.

Conceptually, the application code for a GUI application can be split into two
categories: the component graph,’ and the event handling code.

The component graph is the actual user interface and is comprised of a number
of objects that represent both visible (e.g., buttons) and invisible (e.g., regions) el-
ements of the application. These objects are organized as a tree, with the root of
the tree being the main window or area of the GUI In modern GUI frameworks,
constructing a component graph can be done by writing code, but also through con-
figuration files that can be generated by GUI building tools. Ultimately, the two
approaches are equivalent because, once the code runs, the outcome is the same: a
graph of objects that form the user interface. The design of the library classes that
support the construction of a component graph makes heavy use of polymorphism
and the ComposITE and DECORATOR patterns. In JavaFX, the component graph for a
user interface is typically instantiated in the application’s start (Stage) method.

Once the framework is launched and displaying the desired component graph, its
event loop will automatically map low-level system events to specific interactions
with components in the graph (for example, placing the mouse over a text box, or
clicking a button). In common GUI programming terminology, such interactions
are called events. Unless specific application code is provided to react to an event,
nothing will happen as a result of the framework detecting this event. For example,
clicking on a button will graphically show the button to be clicked using some user
interface cue, but then the code will simply continue executing without having any
impact on the application logic. To build interactive GUI applications, it is necessary
to handle events like button clicks and other user interactions. Event handling in
GUI frameworks is an application of the OBSERVER pattern, where the model is a
GUI component (such as a button). Handling a button click, or any similar event,
then becomes a matter of defining an observer and registering it with the button. The
next two sections detail how to design component graphs and handle events on GUI
components.

6 Method 1aunch uses metaprogramming to discover which application class to instantiate.
7 In the JavaFX documentation, the component graph is called the scene graph.
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8.6 Graphical User Interface Component Graphs

The component graph is the collection of objects that forms what we usually think
of as the user interface: windows, textboxes, buttons, etc. At different stages in the
development of a graphical user interface, it can be useful to think about this user
interface from three different point of views, or perspectives: user experience, source
code, and run time.

The User Experience Perspective

The user experience perspective corresponds to what the user experiences when in-
teracting with the component graph. Figure 8.2, shown earlier in this chapter, shows
the user experience perspective on the component graph for the LuckyNumber ap-
plication. Because not every object in the component graph is necessarily visible,
it is important to remember that the user experience perspective does not show the
complete picture of the application. This picture is complemented by the other two
perspectives.

The Source Code Perspective

The source code perspective shows the kind of information about the component
graph that is readily available from the declarations of the classes of the objects
that form the component graph. This information is best summarized by a class
diagram. Figure 8.14 models the source code perspective on the component graph
of the LuckyNumber application. Despite the application being tiny, the diagram
shows that a lot of code is required to instantiate its component graph. Let us walk
through this diagram.

The scene holds a reference to the root node of the component graph, something
we can deduce from the fact that it is not a subtype of Node, and no class in the
diagram aggregates it. The Scene class aggregates class Parent. This is an example
of polymorphism in use. To allow users to build any kind of application, the scene
library class accepts any subtype of type Parent as its target object. In turn, Parent
is a subtype of the general Node type that adds functionality to handle children
nodes. In JavaFX, all objects that can be part of a component graph need to be a
subtype of Node, either directly or, more generally, indirectly by inheriting from
other subtypes of Node. The fact that Parent nodes, which can contain children
nodes, are themselves of type Node shows that the design of the GUI component
hierarchy is an application of the CoMPOSITE pattern.

By continuing our investigation of the diagram, we find class GridpPane as a
subtype of Parent. This is the reason it is possible to add a GridPane to a scene. A
GridPane is a type of user interface Node that specializes in organizing its children
into a grid. I used it for LuckyNumber to lay out the number views vertically on top
of each other.
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Scene K>— Parent K  GridPane

TextPanel IntegerPanel SliderPanel
1 <f1
TextField Slider

Fig. 8.14 Source code perspective on the LuckyNumber application

In the general case, a Gridpane can contain any subtype of Node. However,
in my design of the application, I created three classes that inherit from Parent:
TextPanel, IntegerPanel, and sliderPanel. These classes represent the three
views of the number in the Model-View—Controller decomposition. By defining
these classes as subclasses of pParent, I achieve two useful properties:

I reuse the parenting functionality of Parent to add a widget (e.g., a slider) to a
Node;

* By defining my view classes as subtypes of Node, I make it possible to add them
as children of a Gridpane through polymorphism.

The remainder of the diagram shows how the tree would generate its leaves:
the SliderPanel aggregates a Slider instance, and both the TextPanel and
the IntegerPanel aggregate a TextField instance. It is worth noting that, al-
though both TextPanel and IntegerPanel have an association to the TextField
model element, it does not mean that their respective instances refers to the same
TextField instance.

The diagram of Figure 8.14, already somewhat involved, actually omits, for clar-
ity, many intermediate types in the inheritance hierarchy for nodes. For example, the
diagram shows Gridpane to be a direct subclass of Parent. In reality, GridPane
is a subclass of Pane, which itself is a subclass of Region, which is a subclass of
parent. Figure 8.15, while still an incomplete model, shows a bigger picture of the
class hierarchy that can be leveraged to define component graphs in JavaFX.
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The Run-time Perspective

The run-time perspective is the instantiated component graph for a graphical inter-
face. This perspective can best be represented as an object diagram. Figure 8.16
shows the instantiated component graph for LuckyNumber.

:SliderPanel
/ :Slider
aSlider = —
:TextPanel
:Scene :GridPane
/> :TextField
/ aText = —
root = — children = —
:IntegerPanel
/> :TextField
aText = —

Fig. 8.16 Run-time perspective of the LuckyNumber user interface

Defining the Object Graph

In Section 8.5 I mentioned how, after the framework starts, it calls the start method
of the main application class (LuckyNumber in our case). This start method is the
natural integration point for extending the framework, and this is where we put the
code that builds the component graph. The code below is the minimum required to
get the application to create the LuckyNumber component graph. In practice, this
kind of code would typically be extended with additional configuration code and
organized using helper methods. The additional configuration code can be used to
beautify the application, for example by adding margins around components, a title
to the window, etc. The JavaFX functionality to generate component graphs from
configuration files is outside the scope of this book.

public class LuckyNumber extends Application {

public void start (Stage pStage) {
Model model = new Model () ;

GridPane root = new GridPane();

root.add(new SliderPanel (model), 0, 0, 1, 1);
root.add(new IntegerPanel (model), 0, 1, 1, 1);
root.add (new TextPanel (model), 0, 2, 1, 1);

pStage.setScene (new Scene (root));
pStage.show () ;
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The first statement of method start is to create an instance of Model. This in-
stance will play the role of the model in the OBSERVER pattern. It is related to the
construction of the component graph because, as detailed later, some of the com-
ponents in the graph need access to the model. The second statement creates a
Gridpane, which is an invisible component used for assisting with the layout of
children components. The local variable that holds a reference to this component is
helpfully named root to indicate that it is the root of the component graph. Then,
three application-defined components are added to the grid. The parameters to the
add method indicate the column and row index and span. For example, the state-
ment:

root.add(new SliderPanel (model), O, 0, 1, 1);

specifies to add an instance of the S1iderPanel in the top-left cell in the grid, and
span only one column and one row. Because sliderPanel is a subtype of Parent,
and thus a subtype of Node, it can be added to the grid. Another important thing to
note about the instantiation of the panel components is that their constructor takes
as argument a reference to the model.

The last two statements of the method are not related to the construction of the
component graph, but are nevertheless crucial steps in the creation of the GUI. The
statement with the call to setScene creates a scene from the component graph
and assigns it to the framework’s stage. Finally, the last statement requests that the
framework display the stage onto the user’s display.

For additional insights on the creation of the component graph, the code below
shows the relevant part of the constructor of the IntegerpPanel (the other panels
are very similar).
public class IntegerPanel extends Parent implements Observer {

private TextField aText = new TextField();
private Model aModel;

public IntegerPanel (Model pModel) {
aModel = pModel;
aModel.addObserver (this) ;

aText .setText (Integer.valueOf (aModel.getNumber ()) .toString());
getChildren () .add (aText);
JE e xS

}

public void newNumber (int pNumber) {
aText .setText (Integer.valueOf (pNumber) .toString());
}

This code illustrates a number of insights about the design of the component
graph. First, the application-defined IntegerPanel class extends the framework-
defined Parent class so that it can become part of the component graph. Second, an
instance of IntegerPanel aggregates a framework-defined TextField component.
However, the mere fact of defining an instance variable of type TextField inside the
class does not add the TextField to the component graph. To do this, it is necessary
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for the IntegerPanel to add the instance of TextField to itself, something that
is done with the call getChildren() .add(aText). Method getChildren () is
inherited from class Parent, and used to obtain the list of children of the parent
user interface Node, to which the TextField instance can then be added.

The IntegerPanel instance also maintains a reference to the Mode1. The reason
for this is that the ITntegerPanel needs to act as a controller for the Mode1, some-
thing that will be explained in more detail in the next section. Also, it is worth notic-
ing how the IntegerpPanel is an observer of the Model instance: it declares to im-
plement observer, it registers itself as an observer upon construction (second state-
ment of the constructor), and it supplies an implementation for the newNumber call-
back. As expected, the behavior of the callback is to set the value of the TextField
user interface component with the most recent value in the model, obtained from
the callback parameter.

As a final insight on the design of the component graph, we can note how the
instance of Mode1 created in method start (see preceding code fragment) is stored
in a local variable. In other words, the application class LuckyNumber does not
manage an instance of the model: this is only done within each panel. This design
decision is to respect the guideline provided in Chapter 4, to keep the number of
fields to a minimum. Without care, an application-defined user interface component
can become a Gop CrLasst bloated with numerous references to stateful objects,
which makes a design much harder to understand.

8.7 Event Handling

In GUI frameworks, objects in the component graph act as models in the OBSERVER.
Once the framework is launched, it continually goes through a loop that monitors
input events and checks whether they map to events that can be observed by the
application code. This process is illustrated in Figure 8.17.

Fig. 8.17 The event loop in a
GUI framework

Did the

application
register interest
in this event?

Is a user interface
event detected?

Execute the registered
event handler
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Typically, events are defined by the component library supplied by the frame-
work. For example, the TextField user interface component defines an action
event. According to its class documentation “The action handler is normally called
when the user types the ENTER key”. This means that an instance of TextField
can play the role of the model in the OBsERVER. Figure 8.18 shows the correspon-
dence between the code elements and the roles in the OBSERVER pattern.

: «interface»
TextFied | EventHandler<ActionEvent>
setOnAction(EventHandler<ActionEvent>):void handle(ActionEvent):void

Model :
Abstract Observer

Fig. 8.18 Correspondence between TextField and the roles in the OBSERVER

Handling the action event on a text field is thus a matter of completing three
steps:

* Defining a handler for the event. This means defining a class that is a subtype
of EventHandler<ActionEvent>. The class will be our event handler class.

» Instantiating a handler. This means creating an instance of the class we defined
in the previous step. The instance will be our event handler instance, also called
event handler, or even just handler. It is the concrete observer.

* Registering the handler. This means calling the registration method on the
model and passing the handler as an argument. In the case of TextField, we
need to call setOnaAction (handler). It is worth noticing an interesting design
choice for this application of OBSERVER: it is only possible to have a single ob-
server for a TextField.

Although the basic mechanism for specifying and registering event handlers is
always the same, one design choice that must be resolved is where to place the def-
inition of the handling code. For this, different designs are possible. These include:

* To define the handler as a function object using an anonymous class or a
lambda expression (see Section 3.4). This is a good choice if the code of the
handler is simple and does not require storing data that is specific to the handler;

* To delegate the handling to an element of the component graph by declaring
to implement the observer interface. This is a good choice if the code of the
handler is more complex or requires knowing about many different aspects of
the internal structure of the target component.

Let us see how these two options can be realized in the context of the LuckyNum-
ber application. Using the function object strategy, we could complete the code of
the constructor of IntegerpPanel as follows:
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public class IntegerPanel extends Parent implements Observer {
private TextField aText = new TextField();
private Model aModel;

public IntegerPanel (Model pModel) {
aModel = pModel;
aModel.addObserver (this);

aText.setText (Integer.valueOf (aModel.getNumber ()) .toString());
getChildren () .add(aText) ;
aText.setOnAction (new EventHandler<ActionEvent> () {

public void handle (ActionEvent pEvent) {
int number = 1;

try {
number = Integer.parselnt (aText.getText ());
} catch (NumberFormatException pException ) {

/+ Just ignore. We use 1 instead. */
}

aModel .setNumber (number) ;

With this strategy, the constructor of IntegerPanel creates a function object
using an anonymous class and, at the same time, registers this object to become the
handler of the action event on the text field. The behavior of the handler is to serve
as the controller for the model.

At this point, we now have fwo applications of the OBSERVER at play. One sub-
ject is the Model being observed by all three panels, and another subject is the
IntegerPanel’s TextField that is observed by the anonymous function object.
Figure 8.19 captures the design. Naturally, in the finished application, we would
also have an event handler for the text panel and the slider panel, which would bring
the total number of applications of the OBSERVER to four.

TextField

setOnAction(EventHandler<ActionEvent>):void

IntegerPanel
«interface»
EventHandler

handle(ActionEvent):void

«interface»
Observer

— Model —<> «anonymous»

newNumber(int):void

Fig. 8.19 Two applications of the OBSERVER pattern
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In the case of the LuckyNumber application, one alternative to using function
objects for defining handlers is to delegate the handling of GUI events to the pan-
els themselves. In our case, this would mean declaring IntegerPanel to imple-
ment both Observer and EventHandler<ActionEvent>. The Observer interface
is the same one as before, used to receive callbacks when the model (the number)
is changed. The difference in this case is the addition of the EventHandler inter-
face, which allows the IntegerpPanel to respond to the event that corresponds to
the Enter key being pressed in the panel’s text field.

public class IntegerPanel extends Parent implements Observer,
EventHandler<ActionEvent> {
private TextField aText = new TextField();
private Model aModel;

public IntegerPanel (Model pModel) {
aModel = pModel;
aModel.addObserver (this) ;
aText .setText (Integer.valueOf (aModel.getNumber ()) .toString());
getChildren () .add (aText);
aText.setOnAction (this);
}

public void handle (ActionEvent pEvent) {

int number = 1;

try {
number = Integer.parselnt (aText.getText ());

} catch (NumberFormatException pException ) {
/% Just ignore. We’ll use 1 instead. =/

}

aModel.setNumber (number) ;

}

public void newNumber (int pNumber) {
aText .setText (Integer.valueOf (pNumber) .toString());
}

There are two main implications of this choice on the code. First, the handle
method needs to be declared directly in class IntegerPanel. Second, the argument
passed to aText.setOnAction iS NOW this, because it is the IntegerPanel in-
stance itself that is now responsible for handling the event.

Although both design options for locating the handler code are workable, for the
LuckyNumber application I prefer the function object alternative. The handler code
is just a few lines long, and with the function object the behavior of the handler is
located with other code that initializes the text field, so everything is in one place.
Although there is an element of subjectivity to this argument, the use of function
objects to specify GUI handlers is a common practice. In the absence of a good
reason to do things otherwise, my recommendation would be to use it by default.
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Code Exploration: Solitaire - Solitaire
Overview of the GUI design for a small application.

The GUI code for Solitaire is located in the ...solitaire.gui pack-
age. The application class is solitaire. With the exception of the appli-
cation class and cardbragHandler, each remaining class in the package
defines a graphical component panel that specializes in viewing a specific
part of the data of the GameModel. For example, DiscardPileview is a
subclass of the framework class Hbox that is also a GameModelListener.
Whenever the game model changes, this component responds to the event
(gameStateChanged () ) and shows an image of the card at the top of the dis-
card pile. As usual, the component graph is constructed in the application’s
start method. The design of the Solitaire application relies on a GUI fea-
ture called drag-and-drop. Although the design of drag-and-drop functional-
ity was not covered explicitly in the chapter, its operation is also based on
the OBSERVER pattern. The basic idea is that images of cards are objects in
the component graph, and it is possible to register a handler for an event that
corresponds to a drag gesture being detected on this component.

Code Exploration: JetUML - EditorFrame
Pointers into the GUI design of a full-features application.

The user interface of JetUML makes use of a wide variety of GUI framework
features (menus, tabs, dialog boxes, persistent properties, etc.), so studying its
code should have a high return on investment for readers interested in learning
GUI programming in more depth. The application class is JetuML, but a lot of
the functionality is implemented in class EditorFrame, which is responsible
for creating the top window of the application. Reading through the code of
EditorFrame will reveal many of the main design decisions that underlie the
user interface code, including how tabs are managed, how menus are created,
and how we create dialog boxes.

8.8 The VISITOR Design Pattern

Inversion of control can be useful to create loosely coupled design solutions in con-
texts other than applications of the OBSERVER pattern and event handling mecha-
nisms. An additional recognized use for inversion of control is the VisiTor design
pattern. The context for applying the VisiTor pattern is when we want to make it
possible to support an open-ended number of operations that can be applied to an
object graph, but without impacting the interface of the objects in the graph. To
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illustrate such a context, we will use yet another variant of the cardsource type hi-
erarchy. Figure 8.20 shows a design where different types of concrete card sources
have the cardSource interface in common, but then different individual interfaces
for services other than draw () and isEmpty ();

| «interface» CompositeCardSource
«interface» CardSource
Iterable<Card> <]'“:' CompositeCardSource(CardSource...)
N draw()Card * draw():Card
iterator():lterator<Card> isEmpty():boolean isEmpty():boolean
2 AV
Deck CardSequence

Deck() CardSequence(Card...)

shuffle():void isEmpty():boolean

isEmpty():boolean draw():Card

draw():Card get(int):Card

iterator():Iterator<Card> size():int

Fig. 8.20 Design context for a sample application of the Visitor. Two of the constructors use the
vararg mechanism to accept an unspecified number of cards as argument.

In this design, there are three different types of card sources. Although they all
implement the cardsource interface, their commonality ends there. Class Deck
can be shuffled and is iterable. A cCardSequence can be initialized with a pre-
determined list of cards, but cannot be shuffled and is not iterable. Instead, elements
in a CardSequence can be accessed through an integer index. For this reason, the
class also includes a size () method. Finally, CompositeCardSource is an appli-
cation of the ComposITE with a narrow interface, as it offers no services besides
those of cardsource. In this example as well as in general, the reason classes that
implement an interface have methods other than the ones in the interface is simply
that each class is intended to work in a specific context where its additional methods
are necessary and, to respect the Interface Segregation Principle, the only methods
in the common type are those used by all contexts (see Section 3.9).

The above design will fulfill its mandate as long as the client code only requires
the limited functionality it currently provides. Problems will arise, however, when
we start needing additional functionality from the card sources. Examples of opera-
tions that may be necessary at some point include:

* Printing to the console a description of each of the cards in the source;
¢ Obtaining the number of cards in the card source;

* Removing a certain card from a card source;

* Determining if a card source contains a certain card;

* Obtaining an iterator over all the cards in the source;
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Because all of the concrete card source classes share a common supertype, there
is a straightforward solution to the problem of adding these operations: we can
define new methods on the cardSource interface, one per operation, and imple-
ment them in each subclass. For example, we could make CardSource extend
Iterable<Card>, and add the methods print (), size (), remove (Card), and
contains (Card) to its declaration. If such a solution is a good fit in a design con-
text, then we can adopt it and we do not need the VisiTor pattern. However, adding
methods to an interface has drawbacks and limitations:

e The cardsource interface will get much bigger. Not all methods might be used
in all usage contexts. As mentioned above, there is a risk of violating the Interface
Segregation Principle;

* For a versatile data structure that can be used as a library, it may be hard to
anticipate which operations are going to be necessary in the future. Adding op-
erations that end up unused is a clear case of SPECULATIVE GENERALITYY. In fact,
if the code is distributed as a library, future users may not be able to, or want to,
change the code to add additional operations.

The VisiTor provides a solution in such a context by supporting a mechanism
whereby it is possible to define an operation of interest in a separate class and inject
it into the class hierarchy that needs to support it. In our case, this means we could
write a separate class to implement, for instance, the contains (Card) operation,
and use this class to determine if any concrete CardSource contains the card of
Interest.

Abstract and Concrete Visitors

The cornerstone of the VisiTor pattern is an interface that describes objects that can
visit objects of all classes of interest in an object graph. This interface is appropri-
ately called the abstract visitor. An abstract visitor follows a prescribed structure:
it contains one method with signature visitElementX (ElementX pElementX) for
each different type of concrete class Elementx in the object structure.? In our case,
the abstract visitor would be defined as follows:

public interface CardSourceVisitor {
void visitCompositeCardSource (CompositeCardSource pSource);
void visitDeck (Deck pDeck) ;
void visitCardSequence (CardSequence pCardSequence) ;

As usual, a concrete visitor is an implementation of this interface. In the VisiTor
pattern, we implement one concrete visitor for each operation of interest. In a con-
crete visitor, each visitElementx method provides the behavior of the operation

8 Technically, the methods can be overloaded, which leads to the more compact form
visit (ElementX pElementX). For the reasons discussed in Section 7.5, I recommend avoiding
overloading by using the longer form.
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as applied to a given class. For example, a simple visitor that prints all the cards in
a card source to the console would be defined as such:

public class PrintingVisitor implements CardSourceVisitor {

public void visitCompositeCardSource (CompositeCardSource pSource)

{}

public void visitDeck (Deck pDeck) {
for (Card card : pDeck) {
System.out.println(card);
}
}

public void visitCardSequence (CardSequence pCardSequence) {
for (int i = 0; i < pCardSequence.size(); i++ ) {
System.out.println (pCardSequence.get (1)) ;
}

The first thing to notice in this code is that method visitCompositeCardSource
does not do anything. Because composite card sources do not store cards directly
(they store other card sources), we can defer the printing behavior to the actual card
sources they aggregate. How this works exactly is described below. The second thing
to notice is that methods visitDeck and visitCardSequence do not require Deck
and cardSequence to have the same interface: they can use whatever methods are
available on the concrete type to implement the required behavior.

Another interesting observation about the implementation of the concrete visitor
is that it provides a way to organize code in terms of functionality as opposed to data.
In a classic design, the code to implement the printing operation would be scattered
throughout the three card source classes. In this design, all this code in located in a
single class. One of the benefits of the VisiTor is thus to allow a different style of
assignment of responsibilities to classes, and thus a separation of concerns along a
different criterion (functionality-centric vs. data-centric).

Integrating Operations into a Class Hierarchy

Although a concrete visitor separates a well-defined operation into its own class, it
still needs to be integrated with the class hierarchy that defines the object graph on
which the operation will be applied (henceforth referred to as the class hierarchy).
This integration is accomplished by way of a method, usually called accept, that
acts as a gateway into the object graph for visitor objects. An accept method takes
as single argument an object of the abstract visitor type (CardSourcevVisitor in our
case). Unless there is a good reason not to, we normally define the accept method
on the common supertype of the class hierarchy:
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public interface CardSource {
Card draw () ;
boolean isEmpty();
void accept (CardSourceVisitor pVisitor);

The implementation of accept by concrete types is where the integration re-
ally happens. This implementation follows a prescribed formula: to call the visit
method for the type of the class that defines the accept method. For example, the
implementation of accept for class Deck is:
public void accept (CardSourceVisitor pVisitor) {

pVisitor.visitDeck (this);

}
and the one for class CardSequence is:

public void accept (CardSourceVisitor pVisitor) {
pVisitor.visitCardSequence (this);

}

The only difference between the two implementations of accept is the specific
visitElementx method that is being called. The version of accept for the Compos-
iteCardSource class is more involved, and is discussed further below, in the sec-
tion Traversing the Object Graph.

Figure 8.21 shows the result of applying the VisiTor to our context. The figure
includes two concrete visitors to emphasize that the goal of the pattern is to support
adding multiple operations to a class hierarchy.

Element

«interface» CompositeCardSource
«interface» CardSource
Iterable<Card> <*]_ __ | CompositeCardSource(CardSource...)
' draw():Card <> draw():Card
iterator():Iterator<Card> | | ;& 14 ():-boolean \ isEmpty():boolean —
A accept(CardSourceVisitor) accept(CardSourceVisitor) Absteci oy
o «interface»
* CardSourceVisitor
Deck CardSequence
visitDeck(Deck):void
Deck() CardSequence(Card...) visitCardSequence(CardSequence):void
shuffle():void isEmpty():boolean visitCompositeCardSource(CompositeCardSource):void
isEmpty():boolean draw():Card N
draw():Card get(int:Card | .
iterator():Iterator<Card> size():int
accept(CardSourceVisitor) accept(CardSourceVisitor)

Concrete Elements

PrintingVisitor

ComputeSizeVisitor

Concrete Visitors

Fig. 8.21 Sample application of the VisiTor pattern with the name of the roles in notes
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With the accept method in place, executing an operation on the object graph is
now a matter of creating the concrete visitor object that represents the operation,
and passing this object as argument to method accept on the target element:
PrintingVisitor visitor = new PrintingVisitor();

Deck deck = new Deck{();
deck.accept (visitor);

Figure 8.22 shows the result of calling accept on an instance of Deck. The client
code, which holds the reference to the concrete visitor, calls accept on an instance
of Deck with the visitor as argument. The accept method then calls back the appro-
priate method on the visitor. In this sequence, the visitDeck method qualifies as a
callback method. With complex object structures, it may not always be possible to
determine when a visit method will be called. Just like in the OBSERVER pattern,
the model calls its observers back at the appropriate time, in the VIsITOR, concrete
elements call the visitors at the appropriate time.

client: deck:Deck visitor:PrintingVisitor

visitDeck(deck) S

Fig. 8.22 Sequence diagram of a call to an accept method in an application of Visitor

Traversing the Object Graph

So far in our application of the VisiTor we have left out a critical aspect of the pat-
tern: the traversal of the object graph. Any object graph with more than one element
will have an aggregate node as its root. In our case this is CompositeCardSource,
so let us look at what happens when we apply an operation to such a node. Let us
say we implement accept for this class similarly as for beck and cardsequence:

public class CompositeCardSource implements CardSource {
public void accept (CardSourceVisitor pVisitor) {
pVisitor.visitCompositeCardSource (this);
}
}

Then, if we call accept on an instance of CompositeCardSource, the method in-
vokes its callback visitCompositeCardsource, which does nothing.
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The two core ideas of the VisiTor pattern are to 1) enable the integration of an
open-ended set of operations that 2) can be applied by traversing an object graph,
often a recursive one. Let us consider the object graph illustrated in Figure 8.23. If
we want to print the cards reachable through the root card source, we would need
to traverse the entire graph to find all the cards. We would also need to do such a
traversal to count the total number of cards in a source, remove all instances of a
specific card, etc.

composite:CompositeCardSource deck1:Deck
root:CompositeCardSource
aElements = —
aElements = — sequence:CardSequence
deck2:Deck

Fig. 8.23 Sample object graph generated by the cardsource types

There are two main ways to implement the traversal of the object graph in the
VisiTor. One option is to place the traversal code in the accept method of aggregate
types. The other option is to place this code in the visit methods that serve as
callbacks for aggregate types.

In our case, placing the traversal code in the accept method is relatively straight-
forward:

public class CompositeCardSource implements CardSource {
private final List<CardSource> aElements;

public void accept (CardSourceVisitor pVisitor) {
pVisitor.visitCompositeCardSource (this);
for (CardSource source : aElements) {
source.accept (pVisitor); }

}

Because the traversal code is implemented within the class of the aggregate, it can
refer to the private field that stores the aggregation (aElements). This access to pri-
vate structures is one major motivation for implementing the traversal code within
the accept method. I discuss additional advantages and disadvantages of this choice
below. Figure 8.24 shows the beginning of the call sequence that results from calling
accept on the root target node of Figure 8.23. From this figure it becomes easier
to visualize the concrete visitor as an implementation of callback methods: some
independent code traverses an object structure and calls the visitElementX call-
backs as appropriate, and methods of the visitor object respond to these visitation
notifications. The fact that the traversal code is implemented in accept is visible
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by the fact that some calls to accept originate from the activation bar of a different
accept invocation.

client: root: CompositeCardSource | | composite:CompositeCardSource || deck1:Deck v:PrintVisitor

accept(v)

visitCompositeCardSource(root)

T A A

accept(v)

visitCompositeCardsburce(composite)

Fig. 8.24 Partial call sequence resulting from a call to root .accept on the object graph of Fig-
ure 8.23 when the traversal code is implemented in the accept method

The second option for implementing the traversal code is to put it in the visit
method that corresponds to the element types that are aggregates. In our case this
means, as before, CompositeCardSource. Unfortunately, in our context it is not
possible to implement this option directly, because the aggregate class offers no
public access to the CardSource objects it aggregates. Because the code of the
visit methods is in a separate class, we need a way to access the objects stored by
the private field aElements. To make this work we make CompositeCardSource
iterable over the cardsource instances it aggregates. However, this requirement
to decrease the level of encapsulation of the class is a disadvantage of this design
decision.
public class CompositeCardSource implements CardSource,

Iterable<CardSource> {
private final List<CardSource> aElements;

public Iterator<CardSource> iterator() {
return aElements.iterator();

}

Jx . xS/
}
With this additional service available on CompositeCardSource, wWe can Nnow re-
move the traversal code from the accept method and update the code of visit-
CompositeCardSource in our concrete visitor:
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public class PrintVisitor implements CardSourceVisitor ({
public void visitCompositeCardSource (
CompositeCardSource pCompositeCardSource) {
for (CardSource source : pCompositeCardSource) {
source.accept (this);
}
}
Va4
}

Figure 8.25 shows the corresponding call sequence on the root of the object graph
illustrated in Figure 8.23.

client: root:CompositeCardSource | | composite:CompositeCardSource || deck1:Deck v:PrintVisitor

accept(v)

visitCompositeCardSource(root)

accept(v)

visitCompositeCardéource(composite)
accept(v)
visitDeck(deck1)

Fig. 8.25 Partial call sequence resulting from a call to root .accept on the object graph of Fig-
ure 8.23 when the traversal code is implemented in the visit method

As we have seen above, the main advantage of placing the traversal code in the
accept method is that it can help achieve stronger encapsulation because the inter-
nal structures can be accessed without being part of the class’s interface. The main
disadvantage of placing the traversal code in the accept method, however, is that
the traversal order is fixed in the sense that it cannot be adapted by different visitors.
In our simple example, the traversal order did not really matter. But let us say that in
our print visitor we care about the order in which the cards are printed. The code for
the accept method, above, implements a pre-order traversal (visit the node, then the
children). Some operations, however, might require a post-order traversal (visit the
children, then the node). If the traversal code is implemented in accept, concrete
visitors cannot change it. In a nutshell, if encapsulation of target elements is more
important, it is better to place the traversal code in the accept method. If the ability
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to change the traversal order is more important, then it is better to place the traversal
code in the visit method.

Using Inheritance in the Pattern

The question of where to place the traversal code brings up the issue of code DupLI-
CATED CODEY again. If we place the traversal code in the visit methods, and have
more than one concrete visitor class, every class is bound to repeat the traversal
code in its visit method. A common solution to alleviate this issue is to define an
abstract visitor class to hold default traversal code.” In our case, the following
would be a suitable implementation of an abstract Vvisitor class:

public abstract class AbstractCardSourceVisitor
implements CardSourceVisitor {
public void visitCompositeCardSource (
CompositeCardSource pCompositeCardSource) {
for (CardSource source : pCompositeCardSource) {
source.accept (this);

public void visitDeck (Deck pDeck) {}
public void visitCardSequence (CardSequence pCardSequence) {}

There are two important things to observe about this implementation. First, I re-
tained the interface. Because most concrete visitors would be implemented as sub-
classes of AbstractCardSourcevisitor, one can wonder, why not just use this
abstract class to serve in the role of abstract visitor, and get rid of the interface? The
general reason is that interfaces promote more flexibility in a design. For example,
one concrete drawback of using an abstract class is that, because Java only supports
single inheritance, defining the abstract visitor as an abstract class prevents classes
that already inherit from another class to serve as concrete visitors.

The second notable detail in the above code is that the visit methods for
classes Deck and Cardsequence are implemented with empty bodies. Given that
AbstractCardSourceVisitor is declared abstract, we do not need these dec-
larations. However, providing empty implementations for visit methods allows the
abstract visitor class to serve as an adapter. In more realistic applications of the
pattern, the element type hierarchy can have dozens of different types, with a cor-
responding high number of visit methods. With empty implementations, concrete
visitors only need to override the methods that correspond to types they are inter-
ested in visiting.

As an example, the following declaration creates an anonymous visitor class that
prints the number of cards in every CardSequence in a card source structure, and

9 Here it is important to distinguish between an abstract visitor class and an abstract visitor,
which is usually an interface.
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ignores the rest. Because the class inherits the traversal code, card sequences aggre-
gated within composite card sources will also be reached.

CardSourceVisitor visitor = new AbstractCardSourceVisitor () {
public void visitCardSequence (CardSequence pSequence) {
System.out.println (pSequence.size() + " cards");
}
}i

As a more elaborate example, the following implements a visitor that prints a
representation of the object graph that takes into account the nesting depth of a card
source type and indents it in consequence:

public class StructurePrinterVisitor
extends AbstractCardSourceVisitor {

private static final String TAB = " ";
private String aTab = "";
private void tab() {

aTab += TAB;

private void untab () {
aTab = aTab.substring(TAB.length());

public void visitCompositeCardSource (
CompositeCardSource pCompositeCardSource) {

System.out.println(aTab + "Composite");

tab();
super.visitCompositeCardSource (pCompositeCardSource) ;
untab () ;

public void visitDeck (Deck pDeck) {
System.out.println (aTab + "Deck");

public void visitCardSequence (CardSequence pCardSequence) {
System.out.println (aTab + "CardSequence");

}

The result of using this visitor on the object graph of Figure 8.23 would be:

Composite
Deck
Composite
Deck
CardSequence

This example introduces two new aspects to our discussion so far. First, the visi-
tor is stateful, as it stores data. Specifically, the class defines a field aTab that stores
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the indentation of the element currently being visited. This indentation increases
when visiting the elements aggregated by a composite card source. Correspondingly,
the second notable aspect in the code above is the reuse of the traversal code through
a super call. Here, the pre-order traversal implemented in the abstract visitor class
is what we need. However, additional code is required when visiting a composite
card source. To make this possible, visitCompositeCardSource is overridden to
manage the indentation level, and a super call is made to trigger the traversal code
at the appropriate point.

Supporting Data Flow in Visitor Structures

So far our examples of concrete visitors have carefully avoided the issue of data
flow, because the Printvisitor neither requires input nor produces output. Most
realistic operations, however, do involve some data flow. For example, a visitor to
compute the total number of cards in a card source must be able to return this num-
ber. As another example, an operation to determine if a certain card is contained
in a card source must receive the card of interest as input. When operations are
implemented in traditional methods, this kind of data flow is not an issue: input is
passed in as argument to a method, and output can be returned to the calling context
through return statements. In the VisiTor pattern, this is more complex. To support
a general and extensible mechanism for defining operations on an object graph, the
pattern requires that no assumption be made about the nature of the input and output
of operations.

Data flow for VisiTor-based operations is thus implemented differently, by stor-
ing data within a visitor object. Input values can be provided when constructing a
new visitor object and made accessible to the visit methods. Output values can be
stored internally by visit methods during the traversal of the object graph, and
made accessible to client code through a getter method.'® To exemplify the process,
we implement a visitor that provides an operation to check whether a card source
structure contains a certain card. Such an operation requires both input and output.

public class CheckContainmentVisitor
extends AbstractCardSourceVisitor {

private final Card aCard;
private boolean aResult = false;

public CheckContainmentVisitor (Card pCard) {
aCard = pCard;
}

10 Using generic types, it is also possible to design a solution that does not necessarily require
this accumulation of state for output values. In this solution, the accept and visit methods return
a value of a generic type. Design with generic types is outside the scope of this book, so I do
not present the solution here. However, a sample implementation is available on the companion
website.
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public void visitDeck (Deck pDeck) {
for (Card card : pDeck) {

if (card.equals(aCard)) {
aResult = true;
break;

}
}

public void visitCardSequence (CardSequence pCardSequence) {
for (int 1 = 0; i < pCardSequence.size(); i++) {
if (pCardSequence.get (i) .equals (aCard)) |
aResult = true;
break;

}
}

public boolean contains () { return aResult; }

}

Although this implementation works, it is not as efficient as it should be because
aggregate nodes are traversed even when a card has already been found. Fortunately,
the structure of the VisiTor allows us to eliminate this source of inefficiency with
very little impact on the overall design: all we need to do is to provide an implemen-
tation for visitCompositeCardSource that only triggers the traversal if the card
has not already been found.
public void visitCompositeCardSource (

CompositeCardSource pCompositeCardSource) {

if (!aResult) {

super.visitCompositeCardSource (pCompositeCardSource);

}

Insights

This chapter introduced inversion of control as a way to separate the management
of stateful information from the viewing of this information. Inversion of control is
the principle behind the OBSERVER pattern which, in turn, is the key mechanism that
enables the development of graphical user interface frameworks.

* Avoid PAIRWISE DEPENDENCIEST to keep state synchronized between objects;

* Consider separating the code responsible for storing data from the code respon-
sible for viewing this data from the code responsible for changing the data (the
Model-View—Controller decomposition);

¢ To decrease the coupling between views and model, consider using the OBSERVER
pattern, which promotes inversion of control for updating views;

e With an application of the OBSERVER, the model class does not depend on the
specific types of any observer that observes it;
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¢ In the OBSERVER, the model aggregates a number of observers. The abstract ob-
server is an interface that is implemented by the concrete observers;

» The abstract observer interface should define one or more callback methods that
map to state-changing events in the model;

* The model needs to notify observers when it changes its state, but when to issue
that notification is a design decision;

» There are two strategies for exchanging data between a model and its observers:
the model can push data to observers via callbacks, or the observers can pull data
out of the model via query methods. These strategies can be combined;

* Callback methods can be thought of as events in an event-based programming
style. In this case, models are event sources and observers are event handlers;

e An abstract observer can define multiple callbacks. Abstract observer interfaces
can also be split up in smaller observer interfaces to afford more flexibility in
defining how observers can respond to events;

e [If it is the case that observers implement callbacks by doing nothing, consider
using adapter classes or default methods;

* A GUI application is built by extending an application skeleton provided by the
GUI framework. Application code to extend and customize the framework falls
into one of two categories: component graph construction and event handling;

e It can be useful to think of the GUI component graph from three different per-
spectives: user experience, source code, and run time;

* You can inherit from component classes of the GUI framework to create custom
graphical components that can be added to an application’s GUI;

» To make a GUI application interactive, it is necessary to define handlers for GUI
events that originate from different objects in the component graph. Handlers are
defined as observers of objects in the component graph;

* Handlers can be defined as function objects, or the handling can be delegated to
objects of the component graph.

» Consider using the VisiTor pattern to allow extending an object structure with an
open-ended set of operations, without requiring modification to the interface of
the classes that define this object structure.

Further Reading

As for the other patterns, the Gang of Four book [7] has the original treatment of the
OBSERVER and VISITOR patterns.

In the book Patterns of Enterprise Application Architecture [5], Fowler pro-
vides a description of the Model-View—Controller as a web presentation pattern.
The book Pattern-Oriented Software Architecture Volume 4: A Pattern Language
for Distributed Computing [3] presents it as a pattern for software architecture, and
integrates it into a general system of patterns for designing distributed applications.

Additional information on JavaFX is available on the websites of Java technology
providers, and in particular Oracle and OpenJDK.
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Chapter 9
Functional Design

Concepts and Principles: Behavior parameterization, first-class function,
functional interface, functional programming, function type, higher-order
function, lambda expression, map-reduce, method reference, stream;
Patterns and Antipatterns: COMMAND, STRATEGY.

Object-oriented design offers valuable principles and techniques for structuring data
and computation. However, alternative ways to structure software can also be lever-
aged when designing applications. This chapter provides an introduction to a style
of design that uses the function as its primary building block. With functional-style
design, structuring the code is achieved through the use of higher-order functions,
that is, functions that take other functions as argument. To use higher-order functions
requires the programming language to provide support for functions as a first-class
program entity. This chapter provides an overview of the Java mechanisms that sup-
port functional-style programming and how to use them to integrate elements of
functional style into the design of an overall application.

Design Context

The design problems considered in this chapter focus on the processing of col-
lections of objects to represent playing cards. Problems include sorting a collec-
tion of cards, comparing cards, filtering cards, and computing various aggregate
values about a collection of cards. We will also revisit the implementation of the
CardsSource interface introduced in Section 3.1.
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242 9 Functional Design

9.1 First-Class Functions

Up to now, we have applied most software design principles by organizing data
and computation in terms of classes and objects, and interactions between them.
This is consistent with the object-oriented programming paradigm. There are, how-
ever, situations where the use of objects to realize a design solution seems a bit
contrived. We have already seen an example of such a situation in Section 3.4,
which introduced function objects. For example, to sort a list of cards, the li-
brary method Collections.sort (...) requires as input an argument of type
Comparator<Card> whose sole purpose is to provide an implementation of the
method compare (Card, Card).! We can provide this argument by creating a func-
tion object that is an instance of an anonymous class:

List<Card> cards = ... ;
Collections.sort (cards, new Comparator<Card> () {
public int compare (Card pCardl, Card pCard2) {
return pCardl.rank () .compareTo (pCard2.rank());

}
1)

The reason the code above is contrived is that, from a software design point
of view, what the sort method needs is only the desired comparison behavior for
cards, yet what we actually supply is a reference to an object, something generally
understood as an assembly of data and methods to operate on this data. There is thus
a conceptual mismatch between the design goal and the programming mechanism
employed to fulfill it. The design goal is to parameterize the behavior of the sort
method, and the mechanism we use to do this is to pass a reference to an object.
What would be a better fit, would be for the sort method to take in as input the
desired sorting function directly.

Providing functions as input to other functions, however, requires the program-
ming language to allow this by supporting first-class functions. This essentially
means treating functions as values that can be passed as argument, stored in vari-
ables, and returned by other functions.

Since version 8, Java supports a syntax which, in practice, emulates first-class
functions. For example, we could define a function in class card that compares two
cards by rank:

public class Card {
public static int comparingByRank (Card pCardl, Card pCard2) {
return pCardl.rank () .compareTo (pCard2.rank());
}
}

and supply a reference to this function as the second argument to method sort:

Collections.sort (cards, Card::comparingByRank);

! In this chapter, the term function is used as a general abstraction of computation. In Java, the term
would refer to both static and instance methods.
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This code, which compiles and does what we want, is actually syntactic sugar
that gives the illusion of first-class functions but conceptually converts the method
reference Card: : comparingByRank into an instance of Comparator<Card>. The
syntax and detailed behavior of the code above is described in Section 9.2. The
implications of being able to design with first-class functions is significant. They
are a major design tool which, in some cases, allows us to consider design solutions
that make the intent behind the solution clearer, reduce clutter in the code, and help
reuse code more effectively.

With first-class functions, it becomes possible to design functions that take other
functions as arguments. Such functions are called higher-order functions. In a way,
when considering the above code from a functional point of view, we can say that
Collections.sort is a higher-order function. In some contexts, it is possible to
build entire applications from the principled use of higher-order functions. In such
cases, we would say that the application is designed in the functional programming
paradigm. Using higher-order functions does not, by itself, mean that an applica-
tion’s entire design becomes functional. Functional programming is a much more
comprehensive paradigm whereby computation is organized by transforming data,
ideally without mutating state.

Functional programming, even in the limited context of the Java language, is a
major topic whose detailed treatment is outside the scope of this book. There are
good references available for learning about the ins and outs of functional program-
ming features in Java and beyond (see Further Reading). The goal of this chapter
is to provide enough of an introduction to basic functional programming features
to allow the integration of functional elements into an otherwise object-oriented de-
sign. First-class functions support a whole new level of versatility for exploring the
design space, realizing design principles, and applying design patterns. For this rea-
son, it is important to know about functional-style programming even if we are not
building an application strictly in the functional paradigm. This being said, the last
part of the chapter introduces the map-reduce programming model, which will take
us as close to full-fledged functional programming as we will get in this book.

9.2 Functional Interfaces, Lambda Expressions, and Method
References

The three mechanisms that enable first-class functions in Java are functional inter-
faces, lambda expressions, and method references.

Functional Interfaces
In Java, a functional interface is an interface type that declares a single abstract

method. For example, we could define an interface to represent filtering behavior
for a collection of cards:
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public interface Filter {
boolean accept (Card pCard) ;
}

Except for the constraint that they must only have one abstract method, there is
nothing special about functional interfaces. We can declare classes to implement
them as usual. For example, we can use an anonymous class to define a filter that
only accepts cards with a black suit (Spades or Clubs);

Filter blackCardFilter = new Filter () {
public boolean accept (Card pCard) {
return pCard.suit () .color () == Suit.Color.BLACK;
}
}i

This example shows how the functional interface Filter defines a small slice
of behavior, an idea introduced in Section 3.2. In the context of functional-style
programming, functional interfaces serve another important purpose, though: they
define a function type. The idea of a function type basically goes as follows. If we
forget about the implicit parameter for a second, we can consider method accept of
interface Filter to be a function that takes as parameter a Card instance and returns
aboolean. Thus, we have a function of type card — boolean . Now, because our
Filter interface only defines a single abstract method, implementing this interface
amounts to supplying the implementation for this single function. With a bit of
imagination, we can consider that obtaining an instance of Filter is equivalent
to obtaining an implementation of a method that takes as argument a reference to a
card instance and returns a boolean. Hence, functional interfaces can play the role
of function types.

The use of the word abstract in the definition of a functional interface is im-
portant. Starting with version 8 of the language, interfaces in Java can define static
and default methods. Because an implementation for such methods is provided di-
rectly in the interface, implementing types are not required to provide one. Static
and default methods are thus, by definition, not abstract. This means that an in-
terface can define multiple methods, and still qualify as a functional interface if
only one of them is abstract. An example of such an interface is Comparator<T>
(see Section 3.4). The comparator<T> interface defines numerous static and default
methods, whose purpose is going to become clear later in this chapter. However, the
interface defines a single abstract method: compare (T, T) : int (where T is a type
parameter). For this reason, Comparator is a functional interface that defines the
function type (T, T) — int . The implication for functional-style programming is
that we are able to treat instances of Comparator<T> as first-class functions.

With functional-style programming, Java 8 introduced a library of convenient
functional interfaces, located in package java.util.function. These interfaces
provide the most common function types, such as Function<T, R>, a generic type
that can represent the type of any unary function between reference types.” The
interface has a single method apply.

2 There are equivalent interfaces to represent functions that involve primitive types, such as
IntFunction<R>.
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To use a library type instead of our custom Filter interface, we use the func-
tional interface Predicate<T>, which represents the type of a function with a single
argument of type T that returns a boolean.’ The name of the abstract method for
Predicate<T> is test (T). We can thus rewrite the code above as follows:

Predicate<Card> blackCardFilter = new Predicate<Card> () {
public boolean test (Card pCard) {
return pCard.suit () .color () == Suit.Color.BLACK;

}
}i

Because they define function types, functional interfaces serve as the basis for all
functional-style design in Java.

Lambda Expressions

With functional interfaces, we get one step closer to being able to program with
first-class functions. However, with anonymous classes, specifying the behavior of
our example function still has a definite object-oriented look. If we recall our imple-
mentation of the black cards predicate, above:

Predicate<Card> blackCardFilter = new Predicate<Card>() { ... };

The use of the new keyword in the definition of the behavior of our predicate be-
trays the fact that we are still creating an object. To more directly express our design
in terms of a first-class function, we can define the implementation of a functional
interface as a lambda expression. Lambda expressions are a compact form of expres-
sion of functional behavior whose name is derived from the term lambda calculus,
a mathematical system for expressing computation. In Java, lambda expressions are
basically anonymous functions. They were briefly introduced in Section 3.4. Now
we can take a second look at them in the context of functional-style programming.
To convert our example to use a lambda expression, we would write:

Predicate<Card> blackCardFilter =
(Card card) -> card.suit () .color() == Suit.Color.BLACK;

The syntax of lambda expressions is detailed below, but for now it is sufficient to
know that the function parameter is declared on the left of the arrow (->), and the
expression on the right of the arrow represents the body of the function. Although,
from the point of view of software design, this code has an effect equivalent to using
an anonymous class, the syntax no longer makes use of the new keyword. In addition
to being more compact, the code makes it more obvious that what we are trying to
achieve is to initialize blackCardrilter with behavior (a function) as opposed to
data (an object). We can also say that the function is anonymous because no function

3 In contrast to Function<T,R>, Predicate<T> has a single type parameter because the return
type is implied by the interface. The function type that corresponds to Predicate<T> is thus
T — boolean . We could also specify our filter interface as Function<Card, Boolean>, but this
option is less efficient because it relies on autoboxing.
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name appears in its declaration. From a design point of view, we do not care about
the name of the function because it will get called polymorphically through the name
of the method in the functional interface. Because functional interfaces are intended
to be reused, the name of the method they define tends to be very general, and so it
carries little information about what the method does. In our example, the method
in the Predicate<T> functional interface is test (T): this says nothing about the
actual behavior of our lambda expression (which is to return t rue if the suit of the
card is black). Information about the behavior of the lambda expression is typically
the code of the lambda expression itself or, at best, an informative variable name (as
above). In practice, lambda expressions are not typically documented with a header
comment.

The syntax of lambda expressions comprises three parts: a list of parameters, a
right arrow (the characters ->), and a body. In the example above, the list of parame-
tersis (Card card). When the lambda expression requires no parameter, we simply
provide an empty set of parentheses ()->. The body of the lambda expression can
take one of two forms:

* asingle expression (e.g., a == 1).
* ablock of one or more statements (e.g., {return a == 1;}).

In the blackCardrilter example, the definition of the body of the lambda ex-
pression uses the first option. Because, given the functional interface, the return
type is expected to be boolean and the expression evaluates to a Boolean value,
the use of the return keyword is superfluous and can be assumed to be the re-
sult of the evaluation. Using the return keyword would turn the expression into
a statement, thus breaking the syntax. It is worth noting how expressing the body
of a lambda as an expression does not require a semicolon after the expression. In
the blackCardFilter example, the final semicolon terminates the entire assign-
ment statement, not the lambda expression. Let us rewrite the lambda expression to
express the body as a block:

Predicate<Card> blackCards =
(Card card) -> {
return card.suit () .color () == Suit.Color.BLACK;

i
This code does exactly the same thing as previously. However, because the body of
the lambda expression is no longer a single expression, we need to add curly braces
around the block that consists of a single statement, use the return keyword to in-
dicate what we are returning, and terminate the statement within the block with a
semicolon. As can be seen, the first form (using an expression) is more compact.
Normally, when we write lambda expressions, we define them as expressions when-
ever possible and, if we require multiple statements, fall back on defining them as a
block.

Behind the scenes, lambda expressions are checked by the compiler and, con-
ceptually, turned into function objects through a process of inference. Essentially,
when the Java compiler sees a lambda expression, it tries to match it to a func-
tional interface. In the code above, the right-hand side of the assignment is a lambda
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expression. The compiler will thus look for the type of the variable to which this
lambda is assigned to make sure everything matches, namely:

* The type of the variable is a functional interface;

* The parameter types of the lambda expression are compatible with those of the
functional interface;

* The type of the value returned by the body of the lambda expression is compatible
with that of the abstract method of the functional interface.

The compiler can actually do a bit more than check the code for correctness:
it can also infer some information about it. Because the types of the parameters
of the function implemented by the lambda expression are already encoded in the
definition of the abstract method of the corresponding functional interface, it is not
necessary to repeat them in the declaration of the lambda expression. To make our
code more compact, we could also omit the optional declaration of parameter type
Card:

Predicate<Card> blackCardFilter =
(card) -> card.suit () .color() == Suit.Color.BLACK;

In fact, if the function type takes a single parameter, we can even omit the parenthe-
ses around the parameter:

Predicate<Card> blackCardFilter =
card -> card.suit () .color () == Suit.Color.BLACK;

Whether or not to include parameter types in the declaration of a lambda expression
is a matter of style. However, it is good to keep in mind that they can help make the
code more readable. When types are provided, a compact variable name becomes
more acceptable. For example, we could rewrite the above as:

Predicate<Card> blackCardFilter =
(Card ¢c) —-> c.suit () .color() == Suit.Color.BLACK;

Essentially, lambda expressions are an idiom used to instantiate functional in-
terfaces. As such, the single method implemented through a lambda expression is
called like any other method. For example, to count the number of black cards in an
instance of Deck, we could do (assuming the Deck is iterable):

Deck deck = ... ;
Predicate<Card> blackCardFilter =
card -> card.suit () .color() == Suit.Color.BLACK;

int total = 0;
for (Card card : deck) {
if (blackCardFilter.test (card)) {
total++;
}

Lambda expressions are also a good match for providing behavior in-place when
required by library or application functions. For example, the method removeIf of
class ArrayList takes a single argument of type Predicate<T> and removes all
elements in the ArrayList for which the predicate is true. Given an ArrayList of
card objects, we can remove all black cards from the list with a single call:
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ArrayList<Card> cards = ... ;
cards.removelf (
card -> card.suit () .color () == Suit.Color.BLACK);

Method References

Lambda expressions are especially useful when we need to supply custom behavior
not defined anywhere else. However, it is also common that one part of the code
requires behavior that is already implemented. Let us consider a slight variant of the
design of the card class where the class includes the definition of the method:

public final class Card {
public boolean hasBlackSuit () {
return aSuit.color () == Color.BLACK;
}
}

If, as above, we are writing some code to delete all back cards from an ArrayList:

ArrayList<Card> cards = ... ;
cards.removelf (
card —-> card.suit () .color() == Suit.Color.BLACK);

then we are essentially rewriting the code of method card#hasBlackSuit. This
does not look so bad here because the code is tiny. However, the reasoning would
become more compelling for a larger piece of code (for example, code with a com-
pound condition). In any case, writing a solution we have already coded is an exam-
ple of DupLICATED CODET, which it is a good idea to avoid whenever possible. One
solution is to call the method within the lambda expression:

cards.removelf (card —-> card.hasBlackSuit());

This is better, but what we really want in the present scenario is to reuse our
method hasBlacksuit as a first-class function. In other words, we want to pass a
reference to hasBlacksuit as an argument to method removeIf. We can do just
that with method references. In Java, method references are indicated with a double
colon expression P : :m where m refers to the name of the method of interest and p is
a prefix that can take different forms. In our case, p refers to the class in which the
method is defined. Thus, card: :hasBlackSuit refers to method hasBlackSuit of
class card. With this method reference, we can rewrite our code as:

cards.removelf (Card::hasBlackSuit);

Using method references in Java is not trivial, though, because there are different
ways to refer to a method. In the code above, we have used a reference to an instance
method of an arbitrary object of a particular type. Remembering that the functional
type we are working with is Card — boolean , in this scenario the function’s
parameter is matched with the implicit parameter of the referenced method. This
can be seen from the lambda equivalent card -> card.hasBlacksSuit (). There



9.2 Functional Interfaces, Lambda Expressions, and Method References 249

are other ways in which the compiler can match method references to functional
interfaces.
Another way is to use a reference to a static method. For example, we could also
have the following static method in some utility class:
public final class CardUtils {
public static boolean hasBlackSuit (Card pCard) {
return pCard.suit () .color () == Color.BLACK;

}
}

and use a reference to that method instead:

cards.removelf (CardUtils::hasBlackSuit);

Although the method reference looks the same as if referring to an instance
method, the compiler interprets the reference in a different way. In this case, the
method reference is interpreted as:

cards.removelIf (card —> CardUtils.hasBlackSuit (card));

As we see, in this case, the function’s parameter is matched with the explicit
parameter of the referenced method .

Java also supports supplying a reference to an instance method of a particular
object, using the notation o: :m where o is an expression that evaluates to a reference
to an object and m is the method. For example, let us assume that our Deck class has
a method topSameColorAs (Card) which returns true if the argument is of the
same color as the card at the top of the deck. To remove all cards in the list whose
color is the same as the card at the top of the deck, we would do:

Deck deck = new Deck{();
V2 S 4

cards.removelf (deck::topSameColorAs) ;

In this case, the parameter of type card would be matched with the explicit pa-
rameter of the instance method of Deck that is called on a specified instance of deck.
The equivalent lambda expression is:

cards.removelf (card —> deck.topSameColorAs (card));

Finally, an important aspect of method references is that they do not have to
match their corresponding functional interface exactly. Technically, a method ref-
erence only needs to be compatible with its required assignment, invocation, or
casting context (see Section 9.4 for an example). How the compiler correctly deter-
mines what to do is outside the scope of this book. However, it is important to know
that method references support using both static and instance methods as first-class
functions, and that the mapping between the reference and the interface method is
based on the parameter and return types.* In our case, both card: :hasBlacksuit,
CardUtils::hasBlackSuit, and deck: :topSameColorAs return a boolean and
take as input a single parameter of type card. In the case of the instance method of

4 1t is also possible to use method references to refer to constructors and array initializers: see
Further Reading.
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a given type (Card: :hasBlacksSuit), the parameter is the implicit parameter of the
method; In the case of the static method (Cardutils: :hasBlacksSuit), the param-
eter is the explicit parameter of the method; In the case of the instance method of a
particular object, the parameter is also the explicit parameter of the method, whose
implicit argument is specified in the method reference. In all cases, the function type
is Card — boolean and the reference can thus be assigned to a variable of type

Predicate<Card>.

9.3 Using Functions to Compose Behavior

First-class functions make it possible to define small pieces of behavior, such as
to filter or compare objects. Taking this idea further, we can use the strategy of
divide and conquer to express more complex behavior in terms of simpler behavior.
Let us consider the problem of comparing two cards, introduced in Section 3.4.
Using a lambda expression, we can define the behavior of the comparison using the
Comparator<Card> interface as follows:

public class Card {
public static Comparator<Card> comparingBySuit () {
return (cardl, card2) ->
cardl.suit () .compareTo (card2.suit ());

}

This design involves a static factory method to return a comparator object that com-
pares two cards in terms of their suit, as defined by the declaration order in the
enumerated type suit. Because we use a lambda expression, the code expresses the
solution more in terms of a first-class function than a function object.

This solution is incomplete because if two cards have the same suit, their relative
order is undefined. To complete the solution, we need to specify a secondary com-
parison order by rank. One way to do this would be to extend the code of the lambda
expression:

public static Comparator<Card> comparingBySuitThenRank () {
return (cardl, card2) -> {
if (cardl.suit () == card2.suit()) {
return cardl.rank () .compareTo (card2.rank());
}
else {
return cardl.suit () .compareTo (card2.suit ());

}
i
}
This code supports a well-defined total order for cards, at the cost of a more complex
lambda expression for which we need to resort to the less compact block form. This
code is also less flexible, because if we wish to sort by rank, then suit instead, we
need to write an entirely new comparator that repeats most of the code, but with
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the order of comparison switched. Moreover, if we want to sort in descending order
instead of ascending order for either rank or suit, we need to yet again rewrite the
code. Ultimately, we have eight options for a basic card comparator: by rank then
suit or suit then rank (two options), where either rank or suit can be ascending or
descending (times four options). To cover all possibilities, we would thus need eight
factory methods, and plenty of DupPLICATED CODEfY.

To work with finer abstractions, we could start by offering comparison in both
relative levels (suit, then rank, and rank, then suit) by creating two factories for
single-level comparison (rank or suit) and two additional factories for complete
comparisons, where the two complete comparisons are composed of the single-level
comparisons by suit and rank.

public static Comparator<Card> comparingByRank () {
return (cardl, card2) ->
cardl.rank () .compareTo (card2.rank());
}
public static Comparator<Card> comparingBySuit () {
return (cardl, card2) ->
cardl.suit () .compareTo (card2.suit ());
}
public static Comparator<Card> comparingByRankThenSuit () {
return (cardl, card2) -> {
if (comparingByRank () .compare (cardl, card2) == 0) {
return comparingBySuit () .compare (cardl, card2);
}
else {
return comparingByRank () .compare (cardl, card2);
}
}i
}
/* etc. */

Unfortunately, without extra help, this idea does not mitigate the complexity of
the composite function (and does not even cover the option to reverse the order of
either suit- or rank-based ordering). The way out of this situation is the insight that
if we want to express a solution in terms of first-class functions, we can also use
functions to do the composition. In the case of functions to express comparisons,
the comparator interface provides many static and default methods intended to
compose comparison functions out of smaller abstractions. Let us try to rewrite our
solution to the problem of supporting the comparison of cards by either rank, then
suit, or suit, then rank, in ascending or descending order, using these helper methods.
We will proceed bottom up, from the smaller abstractions to the more complex ones.

A first key method is Comparator.comparing(...). The signature of this
method is a bit complex but, essentially, it creates a comparator by building on a
function that extracts a comparable from its input argument. For example, we could
rewrite comparingByRank () as:
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public static Comparator<Card> comparingByRank () {
return Comparator.comparing(card —> card.rank());

}

and similarly for bySuitComparator. How exactly the method comparing works
is explained in the next section. For now, it is sufficient to understand the behavior
intuitively: the argument to the method is itself a function that extracts the value we
want to compare on, and the return value is a comparator structure. The resulting
behavior is identical to the original solution using the direct comparison between
Rank instances.

Another major service available in class Comparator is a method to cascade
comparisons (for example to compare by suit if the rank is the same, or vice versa).
This functionality is provided by the method thenComparing. This method is a
default method called on a comparator that takes as input another comparator for
the same type.’> With thenComparing, we can express our cascaded comparison
more directly:

public static Comparator<Card> comparingByRankThenSuit () {
return comparingByRank () .thenComparing (comparingBySuit ());

}

We can observe how this code is already much more explicit about the intent of the
computation than the version above, which explicitly does the cascading of com-
parisons. Inverting the comparison levels then becomes a question of inverting the
order of the comparators in the call chain:

public static Comparator<Card> comparingBySuitThenRank () {
return comparingBySuit () .thenComparing (comparingByRank());

}

The final step required to complete our solution is to provide a way to reverse
the comparison order, from ascending to descending and vice-versa. For example,
this would mean going from either Ace to King or from King to Ace for the rank
comparison (assuming Ace is the first card in the sequence, called an Ace-low se-
quence). To accomplish this without helper methods, we would need to go back to
our basic implementation of comparators and switch the order of the arguments:

public static Comparator<Card> comparingByRankReversed() {
return (cardl, card2) ->
card2.rank () .compareTo (cardl.rank ());

In the code above, the order of the two parameters in the body of the lambda
expression is reversed. Expressing this difference requires a different factory. For-
tunately, it is possible to avoid this DUPLICATED CoDEY thanks to the default method
reversed (), which creates a new comparator that orders elements using the re-
verse of the order used by the implicit argument of reversed (). We can then use
reversed () to reverse either or both of the comparison levels. For example, to sort
by descending suit, then ascending rank, we create a comparator factory as follows:

3 Or a super type, although this eventuality is not covered here.
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public static Comparator<Card>
comparingBySuitReversedThenRank () {
return comparingBySuit ()
.reversed/()
.thenComparing (comparingByRank () ) ;
}

and similarly to sort by descending suit, then descending rank.

At this point, we can express all eight possible comparison orders simply by com-
bining functions with the help of other functions. The resulting code is so straight-
forward to understand that the abstraction benefit gained by encapsulating compara-
tors in a factory method becomes marginal. In the last code fragment above, the
name of the factory method is basically the list of steps directly visible in the func-
tion call chain in the body of the method.

Because the only part of the card interface needed to define the comparison
behavior is already available through the getter methods suit () and rank (), the
factory methods are not strictly necessary. Removing the comparator factories from
the interface of class card helps mitigate the threats of SPECULATIVE GENERALITYT,
namely to provide services that are never used. With the non-abstract methods of
Comparator, developers will be able to provide compact and explicit definitions
of the desired comparison behavior directly where needed. For example, if a code
location requires sorting cards by descending order of suit, then rank, the following
code could be used:®

List<Card> cards = ... ;
cards.sort (Comparator.comparing((Card card) -> card.suit())
.reversed ()
.thenComparing (Comparator.comparing (
(Card card) -> card.rank())
.reversed()));

Although this code is already explicit, there are three significant ways in which we
can further improve it. First, we can use Java’s static import feature to eliminate the
need to qualify the static methods:

import static java.util.Comparator.comparing;

This allows us to remove the qualification of the static method comparing:

cards.sort (comparing ((Card card) -> card.suit())
.reversed ()
.thenComparing (comparing ((Card card) -> card.rank())
.reversed()));

Second, as explained in Section 9.2, we can use method references to refer to
suit () and rank () instead of redefining a lambda expression that simply calls
them.

6 In this context the parameter types must be supplied as part of the lambda expression because the
compiler does not have enough information to infer them.
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cards.sort (comparing (Card: :suit)

.reversed/()
.thenComparing (comparing (Card: :rank)
.reversed()));

Finally, we can observe that class Comparator has an overloaded version of then-
Comparing that combines the behavior of comparing and thenComparing'by di-
rectly taking a function that returns the value of the key we wish to use for compari-
son. In this case we can move the reversal of the comparison to the final comparator.
Our code can thus be reduced to:

cards.sort (comparing (Card: :suit)

.thenComparing (Card: :rank)
.reversed());

This general principle of leveraging library functions to compose first-class func-
tions can be used in a variety of contexts, so before writing Java code that uses
first-class functions as abstractions, it is worthwhile to study the options possible.
Many of the functional interfaces provided in package java.util.function in-
clude some static or default methods that can be used to compose other functions.
For example, returning to our definition of a Predicate for filtering black cards
(see Section 9.2):

Predicate<Card> blackCardFilter =
card -> card.suit () .color () == Suit.Color.BLACK;

Assuming there are only black and red suits, if we want only red cards, we can do:

Predicate<Card> redCardFilter = blackCardFilter.negate();

9.4 Using Functions to Supply, Consume, and Map Objects

In Section 9.1, I presented how first-class functions can be used to parameterize the
behavior of a higher-order function. Another way to think about this design feature
is that first-class functions allow us to specify some processing behavior but to defer
its execution to the point where it is required. In this section I discuss examples
of three common types of deferred processing: supplying an object, consuming an
object, and mapping an object to another object.

Let us start with the problem of defining an implementation of CardSource (in-
troduced in Section 3.1) that can provide an infinite number of cards:
public class InfiniteCardSource implements CardSource {

public Card draw () {

// Return a card.

}

public boolean isEmpty () {
return false;

}
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How can we return an infinite number of cards? Clearly, it is not possible to ini-
tialize the card source with all of the different cards to return, because there should
be an infinity of them. One potential solution is to initialize InfiniteCardSource
with a STRATEGY that is a card factory. In our context, a card factory is any function
that can return a Card object. In Section 3.7 we saw how to implement this idiom in
pure object-oriented style. I now present a variant of the solution that uses the con-
cepts seen in this chapter. The Java class library conveniently provides a functional
interface to capture the behavior of a method responsible for returning an object:
Supplier<T>. Its method get takes no argument and returns a value of type T, the
type argument of the supplier<T> interface. In our case we replace the type pa-
rameter with the concrete type card to yield the function type () — Card. A basic
supplier-based solution would look like this:

public class InfiniteCardSource implements CardSource {
private final Supplier<Card> aCardSupplier;

public InfiniteCardSource (Supplier<Card> pCardSupplier) {
aCardSupplier = pCardSupplier;
}

public Card draw () {
return aCardSupplier.get();
}

public boolean isEmpty () {
return false;

}

With this class, we can now easily create various kinds of infinite card sources.
For example, we could define a static method random () on class card, which re-
turns a random card, and do:

InfiniteCardSource randomCardSource =
new InfiniteCardSource (Card::random);

As another example, we could also create an infinite source of Ace of Hearts
cards:

InfiniteCardSource aceOfHearts =
new InfiniteCardSource(()-> Card.get (Rank.ACE, Suit.HEARTS)) ;

The key insight to observe from this demonstration is that, conceptually, what
we are handling are functions to obtain objects, as opposed to the required objects
themselves. This allows us to defer the execution of the factory method until the
very point where the object is required.

A similar idea can be used to parameterize how a certain object is used, or con-
sumed. As an example, we will design a ConsumingDecorator which executes
some parameterized behavior whenever a card is drawn from a cardsource (see
Section 6.4 to review the design of a DEcoraTor). In this case, we need to param-
eterize what will happen to the card being drawn. This requires a function type
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Card — void , which can be realized by invoking the generic functional interface
Consumer<T>, which has the abstract function accept (T) which returns void.

public class ConsumingDecorator implements CardSource {
private final CardSource aSource;
private final Consumer<Card> aCardConsumer;

public ConsumingDecorator (CardSource pSource,
Consumer<Card> pCardConsumer) {
aSource = pSource;
aCardConsumer = pCardConsumer;

public Card draw () {
Card card = aSource.draw();
aCardConsumer.accept (card) ;
return card;

public boolean isEmpty () {
return aSource.isEmpty () ;

As can be seen from the implementation of draw, we are parameterizing our
class with behavior that is executed only at the specific point where it is needed,
namely when a card is drawn. The following code shows how we can use a
ConsumingDecorator to create a Deck that prints every card drawn to the console:

CardSource source = new ConsumingDecorator (new Deck (),
System.out::println);

In this example, the first argument is an instance of Deck (a concrete subtype of
CardSource), and the second argument is our consumer of card objects. The argu-
ment is a reference to an instance method of a particular object, namely the method
println (Object) of the library static field system.out (of class Printstream),
which is the standard mechanism for printing to the console. The code thus pro-
vides an example of a case where a method reference is matched to a functional
interface with a compatible, but not identical, function type (see Section 9.2). In our
case, we are supplying a method of type Object — void to a context that requires
card — void . This assignment is compatible because, according to the rules of the
type system, it is safe for the type of a method argument to be more specific that the
type of the formal parameter.’

Supplier and consumer functions support one-way deferred data flow. Naturally,
there can also be situations where we need to both consume and supply a value. The
generic function type that captures this requirement is T — R, and it is supported by
the functional interface Function<T, R> (introduced in Section 9.2). Another way

7 In consequence, a reference to print1n can be used when a consumer is expected. For example,
the default library interface method Iterable#forEach takes a Consumer as input. Hence, to print
all elements in an iterable, we can simply call forEach (System.out: :println) on that iterable.
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to understand this behavior is that we need a function that maps an object of type T
into an object of type R. As it turns out, we have already used this mechanism.

The static method Comparator.comparing, presented in the previous section,
requires as input a Function called a key extractor. If we want to build a comparator
that compares card objects based on their suit, we do:

Comparator<Card> bySuit = Comparator.comparing(Card::suit);

The argument to comparing is an instance of Function<Card, Suit>, an in-
vocation of the functional interface Function<T, R> whose method apply takes an
argument of type Card and returns a reference to an object of type suit. This means
that the code that implements method comparing will have a way to map from an in-
stance of card to a corresponding instance of suit whenever necessary in the logic
of the method’s implementation. Let us explore how the method works. The code
below is a slightly simplified version of the actual implementation of comparing as
invoked for the card and Suit type parameters:
public static Comparator<Card> comparing(

Function<Card, Suit> keyExtractor) {

return (cardl, card2) —-> keyExtractor.apply (cardl)

.compareTo (keyExtractor.apply (card2));
}

A sample use of this code is as follows:

Comparator<Card> comparator =
Comparator.comparing (Card::suit ());
comparator.compare (cardl, card?2);

When comparing is called, it creates a new function object that binds card: :
suit to keyExtractor, but without calling either apply or its delegate method
suit. That is, comparing uses the function as a building block when creating a
new function. Similarly to how we used suppliers and consumers, above, this in-
direction is necessary because the comparison behavior needs to be executed on-
demand within the compare method. Hence, when method compare is called, only
then is apply called, this time twice, once for each card. Because apply delegates
to method suit, at that point the suit value is obtained from the card and used in the
comparison. Figure 9.1 illustrates the complete sequence.

Code Exploration: JetUML - Property
Using suppliers and consumers to define general properties.

In JetUML, diagram elements have different properties. For example, a class
node in a class diagram has name, attributes, and methods properties. A
Property object represents a property value, but does not store the value.
Instead, an instance of Property acts as proxy for obtaining and supply-
ing a value. A Property object thus has a field of type supplier<Object>
that it uses to ger the value from the host object, and a field of type
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client: c:Comparator lambda1:Function card1:Card card2:Card suit1:Suit

compare(card1,card2)
apply(card1)
_____ sutt_____| | 5
apply(card2)
suit() H
_____________ we ]
Lo osu2 | ] : ;
: compareTo(suit2) |
oo U

Fig. 9.1 Sequence of calls for comparing two cards using a comparator created with comparator.

comparing

Consumer<Object> to set the value within the host object. Properties are cre-
ated in method buildProperties () of the different DiagramElement sub-
types, and used by class PropertySheet.

9.5 First-Class Functions and Design Patterns

Many design patterns rely on polymorphism to enable variation points in the so-
lution. For example, the STRATEGY pattern relies on polymorphism to allow client
code to dispatch the execution of an algorithm to a dynamically selected variant
(see Section 3.7). Similarly, the OBSERVER pattern relies on polymorphism to allow
a subject to notify observers whose exact nature is also determined at run time (see
Section 8.3). In the original object-oriented description of the design patterns, this
polymorphism is enabled by extending classes and implementing interfaces.

In functional-style design, first-class functions provide a new options for behav-
ior parameterization. Instead of creating objects of different classes and enabling
polymorphism through a common supertype, we can define families of functions
whose type is compatible and invoke them interchangeably. This is possible in any
context, but it is interesting to note that first-class functions allow a re-thinking of
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the implementation of design patterns. By way of illustration, in this section I revisit
the implementation of the STRATEGY and OBSERVER patterns using a functional style.

Functional-Style STRATEGY

In simple cases where strategies are stateless and their interface boils down to a
single method, we can express the abstract strategy as a functional interface. I have
already illustrated this scenario in Section 9.4, by using the supplier<T> interface
as an abstract strategy for card factories.

As a different illustration, let us consider a context where client code can use
different strategies for selecting a card in a list. Here, concrete strategies are imple-
mentations of method apply of interface Function<List<Card>, Card>, which
becomes the abstract strategy. In our case, method apply takes as input a list of
cards and returns a single card. As an example of a client class for the strategy, we
could have:

public class AutoPlayer {
private Function<List<Card>, Card> aSelectionStrategy;

public AutoPlayer (Function<List<Card>, Card> pStrategy) {
aSelectionStrategy = pStrategy;
}

public void play () {
Card selected = aSelectionStrategy.apply(getCards());
VB

}

// Gets the cards to supply to the strategy
private List<Card> cards() { /* ... */}
}

In this design, the card selection strategy is provided as an argument to the con-
structor when the client autoplayer object is created. Because the strategy is a
first-class function, defining it involves defining the behavior of this function at any
convenient point in the code. One option could be to define it on the fly at the loca-
tion where the instance of AutoPlayer is created. For example, a strategy to always
select the first card would be:

AutoPlayer player = new AutoPlayer (cards —-> cards.get (0));

For more elaborate strategies, another option could be to define a collection of
common strategies in a utility class:

public final class CardSelection {
private CardSelection () {}

public static Card lowestBlackCard(List<Card> pCards) { ... }
public static Card highestFaceCard(List<Card> pCards) { ... }
Jx . xS/
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and use method references to select a strategy:

AutoPlayer player =
new AutoPlayer (CardSelection::lowestBlackCard);

This implementation style is very compact, and even perhaps too much so. The
use of the general Function functional interface in this context has two poten-
tial limitations. First, it has low documentation effectiveness. Looking at the type
Function<List<Card>, Card>, all we know is that it can return a Card given a
list of cards. For this reason, any reference to the card selection strategy needs to
be done through well-named variables for the code to remain readable. Here, field
aSelectionStrategy fulfills the requirement. A second problem is that the single
method in the Function interface is also general-purpose, and for this reason can-
not include any context-specific information. In our example, we need to determine
how to handle the case where the list is empty. One possibility would be to redefine
the strategy as Function<List<Card>, Optional<Card>, and somehow remem-
ber that by convention passing an empty list results in an empty optional object.
Another possibility would be to state that the input list must not be empty is a pre-
condition for the strategy. In both cases, it is not clear where one would document
this critical piece of information.

For these reasons, defining an additional functional interface to represent the
strategy will lead to clearer code and a more self-explanatory design. The new in-
terface can also be used to hold some standard strategies. The following code shows
an implementation of a STRATEGY application for selecting cards that uses design
by contract to guard against the case of selecting from an empty list and uses the
Optional type to guard against the case where a strategy yields no card. Although
in this case it would make sense to return optional.empty () if the input list is also
empty, both options are included for the sake of illustration.

public interface CardSelectionStrategy {

J ok
* Select an instance of Card from pCards.
* @param A list of cards to choose from.
* @pre pCards != null && !pCards.isEmpty ()
* @post If RETURN.isPresent (), pCards.contains (RETURN.get ())
*/

Optional<Card> select (List<Card> pCards);

public static Optional<Card> first (List<Card> pCards) {
return Optional.of (pCards.get (0));
}

public static Optional<Card> lowestBlackCard(List<Card> pCards)
{ /* ... */}

public static Optional<Card> highestFaceCard(List<Card> pCards)
{ /% ... %/}



9.5 First-Class Functions and Design Patterns

Code Exploration: Solitaire - GreedyPlayingStrategy
Using method references to build a main strategy out of sub-strategies.

The Solitaire application provides an example of behavior composition us-
ing first-class functions in the definition of automatic playing strategies. One
of the features of the application is to automatically play a move based
on some heuristic when a user types the Enter key. However, in a game
of Solitaire, there are often situations where multiple legal moves are pos-
sible. Class GreedyPlayingStrategy provides an implementation of the
PlayingStrategy interface by defining a number of sub-strategies as static
methods, where each sub-strategy is one type of move (e.g., to select a card
from the deck, to move a card to a foundation pile, etc.). The overall strat-
egy can then be reduced to the order in which substrategies are attempted.
The meta-heuristic (high-level operation) implemented by the actual strategy
method is to cycle through a collection of first-class functions that represent
sub-strategies, apply them, and stop as soon as one strategy is successful (as
determined by a non-empty value in the Optional return value).

Functional-Style OBSERVER

261

In the OBSERVER pattern, an observable object notifies its observer objects by calling
their callback method(s). In contexts where we can define an abstract observer with
a single callback, we can use functional-style design to create a compact application

of the pattern.

As an example, we will create an ObservableDeck class that is essentially a
version of Deck whose calls to method draw () can be observed. Using the push
data-flow strategy, we want to notify observers every time a card is drawn from the
deck, letting them know which card was drawn. The functional type for the callback
is thus card — void . This is exactly the functional type of Consumer<card>, so

We can use Consumer<Card> as our observer interface:

public class ObservableDeck extends Deck {
private Consumer<Card> aDrawHandler;

public ObservableDeck (Consumer<Card> pDrawHandler) {
aDrawHandler = pDrawHandler;

}

public Card draw () {
Card card = super.draw();
aDrawHandler.accept (card) ;
return card;
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To create an observable deck, we instantiate the class with a function that imple-
ments the callback. For a basic logging feature, we could just use print1in:

ObservableDeck deck = new ObservableDeck (System.out::println);

With this code in place, extending the class to support observer to shuffle ()
events would simply be a matter of duplicating the design to support a second ob-
server.

It is interesting to contrast the design of ObservableDeck with the design of the
ConsumingDecorator, presented in Section 9.4. In light of the current discussion,
it should become apparent that the ConsumingDecorator is essentially an observ-
able cardsource. While the ConsumingDecorator used aggregation to attach an
observer, the ObservableDeck used inheritance. The use of the consumer<card>
interface, however, fulfills exactly the same role in both designs: to inject additional
behavior that executes in response to an event in the life-cycle of the observable
object.

Code Exploration: JetUML - EditorFrame
Using lambda expressions to define event handlers.

In JavaFX, the interface used to represent handlers of different GUI events
is a functional interface. This decision enables using lambda expression
to define concrete observers (that is, event handlers). JetUML makes ex-
tensive use of lambda expressions to define event handlers in classes of
package ...gui. Class EditorFrame contains the code that implements
the menu actions. The creation of menu item objects is done with the
help of method createMenuItem of class MenuFactory. This method
takes, as one of its argument, an object of the functional interface type
EventHandler<ActionEvent>. Most calls to method createMenuItem
specify the event handler for a menu item using a lambda expression.

9.6 Functional-Style Data Processing

Up to now, the ideas presented in this chapter involve introducing functional ele-
ments into an otherwise object-oriented design. In some cases, the design context
motivates solutions that have a much stronger flavor of functional-style program-
ming. One scenario where functional-style programming shines involves applying
transformations to a sequence of data elements. An example of data processing that
meets this definition is counting the number of acronyms in a body of text. In this
case, the input is a sequence of words, and the transformations are to filter the input
for acronyms, and then to compute the total number of instances found.
Functional-style design is a good match for this type of data processing because
it naturally calls for the use of behavior parameterization and higher-order functions.
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Higher-order functions implement the general data-processing strategies, which are
then parameterized for a particular context with first-class functions. In the text-
processing example above, the general strategy is to check whether each input ele-
ment (a word) matches a certain predicate (acronym or not). Although the general
strategy of filtering over a predicate is likely to apply to many different problems,
the predicate itself (acronym detection) is specific to the particular design context.
In other cases we might want to write code that detects short words, proper nouns,
etc. This idiom can be illustrated by the statement:

data.higherOrderFunction (firstClassFunction) ;

Applied to our current example, this would mean:

listOfWords.filter (isAcronym) ;

Functional-style data processing is a major topic in software design. This section
provides a basic overview of the main concepts and techniques that underlie this
design style, and how to realize them in Java.

Data as a Stream

The main concept that enables functional-style data processing in Java and similar
technologies is that of a stream. Simply stated, a stream is a sequence of data el-
ements, a bit like a collection. However, the major conceptual difference between
a stream and a collection is that a collection represents a store of data whereas a
stream represents a flow of data. This distinction is similar to the difference be-
tween storing music as a file vs. playing music via an on-line streaming service. For
software design, the distinction between collections and streams has many practical
implications:

* Elements in a collection have to exist before they are added to the collection, but
elements in a stream can be computed on-demand.

¢ Although collections can only store a finite number of elements, streams can
technically be infinite. For example, although it is not possible to define a list
that contains all the even numbers, it is possible to create a stream that produces
this data.

* Collections can be traversed multiple times, but the traversal code is located out-
side the collection, for example in a for loop or iterator class. In contrast, streams
can only be traversed once: their elements are consumed as part of the traversal.
However, the traversal code is hidden within the higher-order functions provided
by the stream’s interface.

» Streams are amenable to being parallelized, mainly because the traversal of their
elements is hidden as part of the stream abstraction.

An additional, more pragmatic, difference relates to the evolution of the Java lan-
guage. Collection classes (List, Set, etc.) were released before the language had
explicit support for first-class functions, so collections provide limited support for
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higher-order functions.® In contrast, Java 8 provides support for first-class functions
(in the form of method references and lambda expressions) and includes a powerful
stream API designed to support functional-style design. The remainder of this sec-
tion shows how to design functional-style data processing in Java using the stream
APL

A simple way to obtain a stream is to call the stream() method on an instance
of a collection class. For example, if we have a method to return the list of cards
in an instance of the Deck class, we can also stream this data. Figure 9.2 shows the
structures involved.

«interface»
Deck 1 CardStack 1 List<Card>
cards(): List<Card> cards(): List<Card> stream():Stream<Card>

Fig. 9.2 Version of the peck and cardstack classes with methods for returning the cards they
contain

Obtaining a stream of cards from the deck is then just a matter of calling
stream() or the output of cards ():

new Deck () .cards () .stream();

By themselves, streams already support many useful non-higher-order functions.
For example, we can count the elements in the stream:

Stream<Card> cards = new Deck () .cards () .stream();
long total = cards.count();

Streams also support operations that take a stream as their implicit argument and
output a different stream. This process is called pipelining. For example, the sorted
method returns the elements of the original stream in sorted order. Because method
sorted () requires the instances in the stream to be subtypes of Comparable, the
code below assumes the version of class card used implements Comparable:

Stream<Card> sortedCards = cards.stream() .sorted();
Pipelining also makes it possible to combine operations on streams. For example,

method 1imit (int max) returns up to max elements from the stream. To obtain the
first ten cards in sorted order, we can thus write:

Stream<Card> sortedCards = cards.stream() .sorted () .limit (10);

It is also possible to combine multiple streams. For example, to assemble all the
cards from two decks and sort them, we can do:
Stream<Card> cards =

Stream.concat (new Deck () .cards () .stream(),
new Deck () .cards () .stream());

8 The notable exception is the default method forEach available on the Tterable<T> interface
since Java 8.
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To revert to a single deck, one option is to remove the duplicates using distinct ():

Stream<Card> withDuplicates =
Stream.concat (new Deck () .cards () .stream(),
new Deck () .cards () .stream());
Stream<Card> withoutDuplicates = withDuplicates.distinct();

Applying Higher-Order Functions to Streams

The main way that streams support functional-style programming is that they define
a number of higher-order functions. A basic higher-order function for streams is
forEach, which applies an input consumer function to all elements of the stream.
For example, to print all cards in a stream in a functional way, we could do the
following:

new Deck () .cards () .stream()
.forEach (card -> System.out.println(card));

The method forEach takes an argument of type Consumer<? super T>, which
means we can supply it a reference to a function that defines a single parameter of
type Card (or any supertype of card). In the example above this reference is sup-
plied in the form of a lambda expression, but we could also use a method reference
System.out::println (see Section 9.4). Because forEach is not guaranteed to
respect the order in which elements are encountered in the stream, a second version,
forEachOrdered, can be used if ordering is important. Because it does not return
a stream, the outcome of the forEach function (either variant) cannot be further
transformed as part of a pipeline. Stream functions that do not produce a stream of
results that can be further processed as part of a pipeline are called terminal oper-
ations. Another example of a terminal operation on streams is the count function
seen above.

Other types of terminal higher-order functions that can be applied to streams
include searching functions such as allMatch, anyMatch, and noneMatch, which
take as argument a predicate on the stream element type and return a Boolean value
that indicates respectively whether all, any, or none of the elements in the stream
evaluate the predicate to t rue. For example, to determine whether all cards in a list
are in the Clubs suit, we would do:

List<Card> cards = ... ;
boolean allClubs = cards.stream()
.allMatch (card -> card.suit () == Suit.CLUBS);

Filtering Streams

The sorted () stream function, mentioned above, shows how we can define inter-
mediate operations to create a pipeline of transformations on a stream. An inter-
mediate operation thus has a stream as an implicit argument, and returns a stream.
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An important function in this pipelining process is the £ilter method, which takes
a Predicate and returns a stream that consists of all the elements of the original
stream for which the predicate evaluates to true. For example, let us assume we want
to count the face cards in a list of cards:

long numberOfFaceCards = cards.stream()
.filter(card -> card.rank () .ordinal () >=
Rank.JACK.ordinal ())
.count () ;

To leverage the benefits of both object-orientation and functional-style program-
ming, predicates such as the one above are best captured as instance methods:

public class Card ({
public boolean isFaceCard() {
return rank () .ordinal () >= Rank.JACK.ordinal ();
}
}

This allows us to use a method reference:

long numberOfFaceCards = cards.stream()
.filter (Card: :isFaceCard)
.count () ;

At first glance, capturing predicates in dedicated methods may seem like an ob-
stacle to the creation of compound predicates. For example, what if we want to
count only face cards in the Clubs suit? Do we have to revert to our original lambda
expression?
long result = cards.stream()

.filter(card —> card.rank().ordinal() >= Rank.JACK.ordinal ()

&& card.suit ()==Suit.CLUBS)
.count () ;

A key insight to avoid ugly code like this is to observe that filters, being an interme-
diate operation, can also be pipelined:

long result = cards.stream()
.filter (Card: :isFaceCard)
.filter (card -> card.suit () == Suit.CLUBS)
.count () ;

At this point, our functional-style code is starting to look much more like a set
of high-level rules for processing data than a set of instructions telling a program
how to operate on inputs. Indeed, one advantage of writing data-processing code
in a functional style is that the result is more declarative than imperative, and thus
better conveys the intent behind the code. Here, for example, a single glance at the
statement shows that we wish to only consider face cards, then further restrict the
data to only consider cards in the Clubs suit, and then finally count the data ele-
ments. It is also worth noting how the code is formatted, with each stream operation
indented and prefixed with its period starting the visible part of a line. This coding
style is a usual convention for formatting stream operations in Java. Its benefit is
that it emphasizes the declarative nature of the code.
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Mapping Data Elements

There are often situations in data processing where we need to transform all data el-
ements in a stream into a derived value. In this case, we leverage the idea of mapping
objects to their desired value, already introduced in Section 9.4. In functional-style
programming, the word mapping is employed in the mathematical sense synony-
mous to a function. For example, we can consider how the function that computes
the square of a number x, denoted x?, actually maps a number x to its square x°.

Many programming languages that support some form of functional-style pro-
cessing provide a mechanism to apply a map (that is, a function) to every element
in a data collection. In Java, the stream class defines a map method that takes as
input a parameter of type Function<? super T, ? extends R>.In other words,
the argument to the map function is another function that takes as input an object
of type T and returns an object of type R.” This means that the map function will
transform a stream of objects into another stream where every object is obtained by
applying a function to an object in the first stream.

As an example, we can consider a function that maps an instance of card to an
instance of an enumerated type Color that represents the color of the card’s suit.
We can apply this function systematically to all elements in a stream using the map
method:

cards.stream() .map (card -> card.suit () .color());

If this expression is evaluated on a shuffled deck, the resulting stream will be a
random interleaving of the values Color.BLACK and Color.RED. Because the result
is also a stream, we can pipeline the result of a mapping operation as for any other
stream. For example, to count the number of black cards in a collection, we could
write:

long result = cards.stream()
.map (card —-> card.suit () .color())
.filter(color -> color == Color.BLACK)
.count () ;

Although the same result can be achieved more directly by using filter with a
lambda expression that retrieves the card’s color, the example above illustrates how
we can use map to unpack an object and use only the part of the object that is of
interest for a given computation.

Mapping, however, can accomplish more than extracting data from an input ele-
ment. Let us consider a second example, where we want to compute the score that a
card represents. In some games, cards are assigned a point value that corresponds to
their rank (for instance, Three of Clubs is worth three points), except for face cards
which are all worth ten points. With a mapping process, we can convert a stream of
card objects into a stream of integers that correspond to the score of each card in the
original stream:

9 Technically, T or one of its supertypes, and & or one of its subtypes. The same type argument can
be used for both type parameters T and r.
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cards.stream()
.map (card -> Math.min (10, card.rank().ordinal() + 1));

The result of this expression will be a stream of Integer objects that represent the
score of each card. As usual, whether to encapsulate the score computation in an
instance method of class card is a context-sensitive design decision. If the score
value is used in multiple calling contexts, then it would make sense to add a method
score () to the interface of class card. Otherwise, the lambda expression will suf-
fice.

When mapping to numerical values, as in this case, it is useful to know that the
language provides specialized support for streams of numbers in the form of classes
such as IntStream and DoubleStream. These types of streams work like other
streams, but they define additional operations that only make sense when processing
numbers, such as summing the elements in the stream. To adapt our scoring example
to get the total score, the code needs to explicitly map to an IntStream, and then
call the sum terminal operation:

int total = cards.stream()
.mapToInt (card -> Math.min (10, card.rank().ordinal() + 1))
.sum() ;

As an alternative and more declarative way to specify this computation, we could
also do:

int total = cards.stream()
.map (Card: :rank)
.mapToInt (Rank::ordinal)
.map (ordinal -> Math.min (10, ordinal + 1))
.sum() ;

In the various examples above, we mapped values one-to-one: Card to Color,
Card to Integer, int to int, etc. In some cases, however, we want to be able to
operate on a stream created from a structure that involves a one-to-many relation
between objects. For example, let us say we have a list of Deck instances:

List<Deck> listOfDecks = Arrays.asList (new Deck (), new Deck());

How can we operate on all the cards reachable through the list? Streaming the
list with deck.stream () will produce a stream of instances of Deck, not Card. We
need an additional operation to unpack the decks into a stream of cards. We could
try mapping using Deck#cards () :
listOfDecks.stream/()

.map (deck —> deck.cards () .stream())
.forEach (System.out::println);

This, however, will not work because the map function returns a stream of the
return type of its argument function. Because the function type of the argument is
Deck — Stream<Card> , map Will return an instance of Stream<Stream<Card>>
when what we want is just Stream<Card>. The requirement to map an object to
multiple (zero or more) objects can instead be handled using a special kind of map-
ping function called a flar map. Conceptually, a flat map operation maps each input
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object to a stream, but merges the resulting streams into a single one instead of col-
lecting the streams as individual elements of another stream. In Java, this service
is provided by method flatMap. In our scenario, we would thus use flatMap as
follows:

listOfDecks.stream()

.flatMap (deck -> deck.cards () .stream())
.forEach (System.out::println);

Reducing Streams

When working with streams of data, a common scenario is that we want to not only
process each data element, but also do something with the data as a whole. Typically,
this means either:

* Aggregating the effect of the operations into a single result. Terminal operations
such as count () and sum () are examples of data aggregation in that sense;

* Collecting the individual results of the operations into a stored data structure. In
Java this would typically mean a List or other collection type.

Although they may seem like different operations, these alternatives have in com-
mon that, conceptually, they represent reducing a stream to a single entity. In the
second case, the entity may be a collection of many elements, but conceptually it is
nevertheless a single, stored structure as opposed to a stream. The advantage of gen-
eralizing all types of data aggregation as a single high-level operation, reduction, is
that it introduces a clear distinction between intermediate operations, namely map-
ping,'® and terminal operations, namely reducing. In fact, programming systems
where computation is expressed as a series of mapping operations followed by a
reduction operation are commonly known as the map—reduce programming model.
Although the term map-reduce is mostly used in the context of cluster computing,
the basic model itself is directly applicable to functional-style programming with
streams.

In Java, reduction is supported through various overloaded versions of the reduce
method available in stream classes. Implementing a reduction from scratch can be
tricky, and the complete details are outside the scope of this book. However, the
general idea is to provide the reduce function with an accumulator object that can
incrementally update the reduced version of the input every time an element is en-
countered. For example, to implement the sum operation on an IntStream using the
reduce method, the following code is used:

IntStream numbers = ... ;
int sum = numbers.reduce (0, (a, b) -> atb);

This summing reduction uses 0 as the base case and accumulates results by itera-
tively adding elements. The code below shows a simplified mock-up implementation
of the reduce method for IntStream:

10 We can consider that filtering is a type of mapping without loss of generality.
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public int reduce (int pBase, IntBinaryOperator operator) {
int result = pBase;
Iterator<Integer> iterator = this.iterator();
while (iterator.hasNext ()) {
int number = iterator.next();
result = operator.applyAsInt (result, number);
}

return result;

Initially, the result of the reduction operation is set to the base provided, in our
case 0. Then, for each element in the stream, the binary operator provided as input
to reduce is applied, using as arguments the current result and the next element in
the stream. In our case the binary operator was specified using the lambda expres-
sion (a,b) -> a+b. Thus, for each element in the stream, the value of the current
reduction will be assigned to itself plus the value of the next element.

This being said, because most common reduction operations (min, max, count,
sum, etc.) are directly supported by the stream classes, it is possible to get started
with streams and get quite far without mastering the art of writing reductions.

Reductions that serve to accumulate data in a structure are a special case. Let us
say we wish to collect all face cards in a list of cards into a separate list. One quick
solution would be to use the forEach method to store the elements of the stream in
the target list:

List<Card> result = new ArrayList<>();
cards.stream()
.filter (Card: :isFaceCard)
.forEach (card -> result.add(card));

Although workable, this design loses some of the properties of declarative,
functional-style expressions of a computation, because the first-class function that
simulates the reduction is implemented using explicit list manipulation operations.
As an alternative that supports a more functional style, the Java libraries provide
methods to create a type of reduction called a collector. A collector is a reduction
that accumulates elements into a collection. With a collector, the code above can be
rewritten as:

List<Card> result = cards.stream/()
.filter (Card::isFaceCard)
.collect (Collectors.toList ());

In this last example, the details of the implementation of the accumulation of ele-
ments into a list remain hidden, and the code directly expresses the desired intent:
to collect the elements of the stream into a list.
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Code Exploration: JetUML - EditorFrame

Streaming operations on GUI components.

JetUML makes targeted use of the streaming API to streamline some algo-
rithms within methods. Among others, class EditorFrame provides two ex-
amples. In method getNumberOfUnsavedDiagrams, | use stream operations
to count the number of graphical user interface fabs that contain an unsaved
diagram. In method setMenuvisibility, I use a flat map to flatten top-
level menu items and their sub-items into a single stream, which I then fil-
ter for some property, and then disable. Searching the project for the string
".stream ()" will reveal numerous other examples of streaming within the
code base.

Insights

This chapter introduced functional-style design and the programming language
mechanisms that support it, and showed how to employ these mechanisms to embed
functional elements into an object-oriented design.

Consider a solution in the functional style for parts of a design that involve pa-
rameterizing behavior;

Lambda expressions should be short and self-documenting: consider reorganiz-
ing your code to make them so;

Favor short lambda expressions where the body is also an expression (as opposed
to a block of statements);

To emphasize flexibility and extensibility in your design, use library functional
interfaces to define function types; to emphasize design constraints and intent,
use application-defined functional interfaces;

When designing methods, keep in mind how they could be used through refer-
ences: ensure they are a good match for likely functional interfaces;

Compose functions using functions, as opposed to imperative statements;

Use the methods of library types to compose functionality in intuitive ways;
Consider using supplier, consumer, and mapping function types to parameterize
behavior;

Consider functional variants when applying design patterns;

Structure data-processing code so that it is more declarative than imperative in
style;

Use the mapping abstract operation to convert data elements into the values that
are directly used by a computation;

Use collector objects to accumulate the result of stream operations.
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Further Reading

A resource for diving more deeply into functional-style programming in Java is the
book Java 8 in Action by Urma et al. [16]. The book is for experienced programmers,
but it provides an accessible introduction to the topic and a progressive treatment,
which allows the reader to go as far as they are comfortable with. In terms of code
style, Effective Java by Bloch [2] includes a chapter Lambdas and Streams which
provides additional coaching on using these mechanisms in practice. The advice
therein is consistent with the recommendations provided in this chapter, but includes
additional discussions and examples.

For a more pragmatic review of the topic, the Java Tutorial [11] has a section on
Lambda Expressions which also covers method references. The section of the tuto-
rial on collections also covers streams, in a subsection titled Aggregate Operations.



Appendix A
Essential Java Programming Concepts

This appendix provides a brief orientation through the concepts of object-oriented
programming in Java that are critical for understanding the material in this book and
that are not specifically introduced as part of the main content. It is not intended as a
general Java programming primer, but rather as a refresher and orientation through
the features of the language that play a major role in the design of software in Java.
If necessary, this overview should be complemented by an introductory book on
Java programming, or by the relevant sections in the Java Tutorial [11].

A.1 Variables and Types

Variables store values. In Java, variables are typed and the type of the variable must
be declared before the name of the variable. Java distinguishes between two major
categories of types: primitive types and reference types. Primitive types are used to
represent numbers and Boolean values. Variables of a primitive type store the actual
data that represents the value. When the content of a variable of a primitive type
is assigned to another variable, a copy of the data stored in the initial variable is
created and stored in the destination variable. For example:

int original = 10;

int copy = original;

In this case variable original of the primitive type int (short for integer) is as-
signed the integer literal value 10. In the second assignment, a copy of the value 10
is used to initialize the new variable copy.

Reference types represent more complex arrangements of data as defined by
classes (see Section A.2). The important thing to know about references types is
that a variable of a reference type T stores a reference to an object of type T. Hence,
values of reference types are not the data itself, but a reference to this data. The
main implication is that copying a value means sharing a reference. Arrays are also
reference types. For example:
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int[] original = new int[] {1,2};

int[] copy = original;

copy[0] = 3;

int result = originall[0]; // result ==

In this case, copy is assigned the value stored in original. However, because the
value stored in original is a reference to an object of an array type, the copy also
refers to the object created in the first statement. Because, in effect, copy is only a
different name (or alias) for original, modifying an element in copy also modifies
that element in original.

A.2 Objects and Classes

Essentially, an object is a cohesive group of variables that store pieces of data that
correspond to a given abstraction, and methods that apply to this abstraction. For
example, an object to represent the abstraction book could include, among others,
the book’s title, author name, and publication year. In Java, the class is the compile-
time entity that defines how to build objects. For example, the class:

class Book {
String title;
String author;
int year;

}

states that objects intended to represent a book will have three instance variables
named title, author, and year of type String, String, and int, respectively.
In addition to serving as a template for creating objects, classes also define a cor-
responding reference type. Objects are created from classes through a process of
instantiation with the new keyword:

Book book = new Book () ;

The statement above creates a new instance (object) of class Book and stores
a reference to this object in variable book declared to be of reference type Book.
Instance variables, also known as fields, can be accessed by dereferencing a variable
that stores a reference to the object. The dereferencing operator is the period (.).
For example, to obtain the title of a book stored in a variable book, we do:

String title = book.title;

When discussing software design, it is good to avoid subconsciously using the
terms class and object interchangeably. Objects and classes are different concepts.
A class is a compile-time entity that does not exist in running code. Conversely,
objects are run-time entities that do not have any representation in program source
code.



A.3 Static Fields 275

A.3 Static Fields

Java allows the declaration of static fields:

class Book {
static int MIN_PAGES = 50;
String title;
String author;
int year;

The effect of declaring a field static means that the field is not associated with
any object. Rather, a single copy of the field is created when the corresponding class
is loaded by the Java virtual machine, and the field exists for the duration of the
program’s execution. Access to static fields can be restricted to only the code of the
class in which it is declared using the access modifier private. If declared to be
public, a static field can be accessed by any code in the application, in which case
it effectively constitutes a global variable. Because it is generally a bad practice to
modify globally-accessible data, global variables are best defined as constants, that
is, values not meant to be changed. Globally-accessible constants are declared with
the modifiers public, static, and final, and typically named using uppercase
letters (see Appendix B).
class Book {

public static final int MIN_PAGES = 50;
V2 S 4

Static fields are accessed in classes other than the class that declares them by
prefixing their name with the name of their declaring class, followed by a period.
For example:

int minNumberOfPages = Book.MIN_PAGES;

A.4 Methods

In Java and other object-oriented programming languages, a method is the abstrac-
tion for a piece of computation. A method definition includes a return type, a name,
a (possibly empty) list of parameters, a (possibly empty) list of exceptions that can
be thrown by the method, and a method body. The return type can be replaced by
the keyword void to indicate that the method does not return a value. The method
body comprises the statements that form the implementation of the method.
Methods correspond to procedures in procedural languages and functions in
functional languages. Java supports two main categories of methods: static methods
and instance methods. Static methods are essentially procedures, or ‘“non-object-
oriented” methods. Although they are declared in a class for reasons discussed in
Chapter 2, they are not automatically related to any object of the class and must



276 A Essential Java Programming Concepts

explicitly list all their parameters in their signature. Method abs (int), declared in
the library class java.lang.Math, is a typical example of a static method. It takes
an integer as an input and returns an integer that is the absolute value of the input
number: no object is involved in this computation. Static methods are declared with
the static modifier:

static int abs(int a) { /* ... =%/}

and called by prefixing the name of the method with the name of the class that
declares the method, for example:

int absolute = Math.abs (-4);

Another example of a static method would be a method getTitle (Book book)
that returns the title of a book. Because this is a static method, it requires all neces-
sary data to be provided as input:

class Book {
String title;
V2 S 4
static String getTitle (Book book) {
return book.title;

}

In contrast, instance methods are methods intended to operate on a given instance
of a class. For this reason, instance methods have an implicit parameter of the same
type as the type of the class they are declared in. For example, because method
getTitle (Book) operates on an instance of class Book, it makes more sense to
declare it as an instance method of class Book. In this case, the parameter book
becomes implicit: it is not declared in the method’s list of parameters, and its cor-
responding value becomes accessible inside the body of the method in a special
variable called this. The code for get Title written as an instance method is thus:

class Book {
String title;
VA B4
String getTitle () {
return this.title;

}

An instance method gets invoked by dereferencing a variable that stores a refer-
ence to an object. The result of the process is that the object referenced becomes the
implicit argument to the instance method. In the statement:

Book book = ...;
String title = book.getTitle();

the object referenced by variable book becomes bound to the this pseudo-variable
within the body of getTitle ().
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A.5 Packages and Importing

Compilation units (i.e., Java code files) that declare types such as classes are orga-
nized into packages. Types declared to be in one package can be referenced from
code in a different package using their fully-qualified name. A fully-qualified name
consists of the name of the type in the package prefixed by the package name. For
example, class Random of package java.util is a pseudo-random number gener-
ator. Its fully-qualified name is java.util.Random. Declaring a variable using a
fully-qualified name can be rather verbose:

java.util.Random randomNumberGenerator = new Jjava.util.Random();

For this reason, it is possible to import types from another package using the import
statement at the top of a Java source code file:

import java.util.Random;

This makes it possible to refer to the imported type using its simple name (here
Random) instead of the fully-qualified name. In Java, the import statement is only
a mechanism to avoid having to refer to various program elements using fully-
qualified names. In contrast to other languages, it does not have the effect of making
libraries available that were not already available through their fully-qualified name.

In addition to importing types, Java also makes it possible to import static
fields and methods. For example, instead of referring to the abs method of class
java.util.Math as Math.abs, we can statically import it:

import static java.lang.Math.abs;
and then just refer to abs in the code:
int absolute = abs(-4);

In the code fragments in this book, all types referenced in the code are assumed
to be imported. When necessary, the surrounding text will clarify the source of the
imported type.

A.6 Generic Types

A type definition can depend on another type. For example, we can consider the
following type Optionalstring, which may hold a string (the concept of the
optional type is covered in more detail in Section 4.4):

public class OptionalString {
String object = null;

OptionalString (String object) {
this.object = object;
}
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boolean isPresent () {
return object != null;

}

String get () |
return object;

}

A class such as this one could, in principle, be used to wrap any other kind of
reference type. For this reason, it is useful to be able to parameterize some of the
types that a class depends on. This concept is supported in Java through generic
types. Generic types are type declarations that include one or more type parameters.
Type parameters are specified in angle brackets after the type name. In the declara-
tion of a type, a type parameter acts as a placeholder for an actual type, which will
be supplied when the generic type is used. Class OptionalString can be rewritten
to work with any reference type by parameterizing the type of the object it holds:

class Optional<T> {
T object = null;

Optional (T object) {
this.object = object;
}

boolean isPresent () {
return object != null;

}

T get () {

return object;
}
}

In the above code, the letter T does not represent an actual type, but a parameter (i.e.,
a placeholder) that is replaced by the actual type when the generic type is used:

Optional<String> myString = new Optional<>();

The type declaration for variable mystring includes a type argument string. The
effect of this type parameter invocation is to replace the type parameter T with
String everywhere in the declaration of optional<T>. In the corresponding con-
structor call, the argument of the type parameter can be inferred, so an empty set of
angle brackets (<>) need only be provided. This empty set of angle brackets is also
called the diamond operator.

Generic types are used extensively in the library implementations of abstract data
types (see Section A.7). Other features that involve generic types include generic
methods, type bounds, and type wildcards. This book does not delve into the design
of generic types because it is a relatively specialized topic. The content occasionally
uses generic types to elaborate design solutions, but to the extent possible, these are
limited to the invocation of the generic types.
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A.7 Collection Classes

Many of the examples in this book use library implementations of abstract data types
(list, set, etc.). In Java, this set of classes is commonly referred to as the Collections
framework, and located in the package java.util. Collection classes are generic
(see Section A.6). This means that the type of the elements held in a collection,
such as an ArrayList, is a parameter that is provided when the collection type is
used. For example, the following statement declares and instantiates a list of string
instances:

ArrayList<String> myStrings = new ArrayList<>();

A comprehensive knowledge of the Collections frameworks is not necessary to
appreciate the material in the book. However, at a minimum, readers should be fa-
miliar with the interface types List<T>, Set<T>, and Map<T> as well as their com-
monly used implementations ArrayList<T>, HashSet<T>, and HashMap<T>.

A.8 Exception Handling

Java provides a way for methods to indicate when they cannot complete normally
through an exception handling mechanism. Exceptions are objects of a type that is
a subtype of Exception. To throw an exception, an exception object must be first
created, and then thrown using the throw keyword:

void setMonth (int month) {
if (month < 1 || month > 12)
throw new InvalidDateException();

Throwing an exception causes the control flow of the executing code to jump to
a point in the code where the exception can be handled, unwinding the call stack as
it goes. To handle an exception, it is necessary to declare a try block with one or
more catch clauses. A catch clauses declares a variable of an exception type. An
exception raised in or propagated into a try block is caught by the block’s catch
clause if the type of the exception can be legally assigned to the exception variable.
In this example:

try {
calendar.setMonth (13);
} catch (InvalidDateException e) {
System.out.println(e.getMessage());
}

the call to setMonth throws an exception of type InvalidDateException which is
immediately caught by the catch clause and bound to the variable e, which can then
be dereferenced, for example to retrieve the message of the exception. If the type of
the catch clause had been something else (for example NumberFormatException),
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the exception would not have been caught, and would have propagated to the previ-
ous enclosing t ry block in the control flow.

Exceptions in Java can be checked or unchecked. Exceptions are checked if they
inherit from class Except ion but not from Runt imeExcept ion. If a method throws
a checked exception, it must declare it in a throws clause in the method’s signature,

e.g.

void readFile (String name) throws IOException {

VE IR 4
throws new IOException ("Cannot read file");
V2 IR 4

Methods that call a method that declares to throw a checked exception must either
explicitly catch the exception, or re-declare it in their own throws clause. These
requirements do not apply to unchecked exceptions.
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Coding Conventions

Coding conventions are guidelines for organizing the presentation of source code.
Aspects that fall under coding conventions include naming conventions, indenta-
tion, use of spaces, and line length. Following a set of coding conventions can help
improve the readability of the code and prevent some types of errors. Coding con-
ventions can vary from one organization to another because of cultural or practical
reasons (each convention has its advantages and disadvantages).

In this appendix, I highlight the coding conventions used in this book and in the
sample applications (see Appendix C). For additional discussion of coding conven-
tions and why they matter, see Chapters 2, 4, and 5 of the book Clean Code: A
Handbook of Agile Software Craftmanship by Robert C. Martin [8].

Medial Capitals for Identifier Names

As is usual in Java, the identifier names use medial capitalization, also known as
camel case. With medial capitalization, words in a phrase are in lower case and each
new word in the phrase starts with an uppercase letter. Type names start with an up-
percase letter (e.g., ArrayList, HashMap) and method names start with a lowercase
letter (e.g., indexOf, replaceall). Instance variables (i.e., fields), class variables
(i.e., static fields), and local variable names also follow medial capitalization, but
with a special convention for fields (see below).

All Capitals for Constants

Constants (i.e., fields declared static and final) are named in all uppercase letters,
with an underscore separating words (e.g., WINDOW_SIZE).
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Variable Name Prefixes

Field names are prefixed with a lowercase a (for attribute, a synonym for field), e.g.,
abData. Method parameter types are camel-cased and prefixed with a lowercase p
(for parameter), e.g., (pData). Local variables are camel-cased and start with a low-
ercase letter, without a prefix (e.g., data). The only exception to these guidelines is
for the names of the parameters in lambda expressions and records (see Section 2.3),
which are named like local variables. The advantages of this convention are:

* Within a code block, it is always possible to determine what type of variable a
name refers to without having to navigate to the declaration of this variable. In
a book that makes extensive use of partial code fragments, the prefixes are also
helpful for providing the necessary context for a name;

e The convention eliminates the risk of having a local variable hide a field by
reusing the same name;

e The convention eliminates the necessity to use the this keyword to disam-
biguate a field that has the same name as a method or constructor parameter
(e.g., this.data = data;).

Code Blocks, Braces, and Indentation

Code blocks are defined with braces. There are two families of conventions for
structuring code blocks in Java, based on where the opening brace is located. A first
style is to locate the opening brace on the same line as its corresponding declaration
or statement:

String getTitle () {
return title;

}

An alternative style is to position the braces on their own line such that corre-
sponding braces are vertically aligned:

String getTitle()
{

return title;

}

In either case, code statements within a block are indented by one unit (typically
four spaces or one tab character) with respect to the statement or declaration that
introduces the block. In the book, I use the same-line variant because it is more
compact and thus amenable to presentation in a book.

Code Comments

Classes and interfaces should include a Javadoc [10] header comment, along with
the methods they declare. In-line comments are kept to a minimum.
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Ellipses and Adaptations

Code in the sample applications follows these coding conventions strictly. However,
for code fragments in the chapter content I make various concessions for concise-
ness.

In particular, code fragments should not be assumed to constitute complete im-
plementations. In most cases, I silently elide parts of the code not essential to the
discussion. When there is a risk of ambiguity, I use an ellipsis (. . .) to indicate eli-
sion, either in a block of code or in the parameter list of a method signature or the
argument list of a method call. When space permits, I put the ellipsis in a comment
block (/* ... =/)tofacilitate the use of the code in a programming environment.

I also use an indentation tighter than four characters. For one-line methods, I may
also inline the statement and both curly braces. If necessary to avoid a page break
in a code fragment, I place the body of the method on the same line as its signature.
I will also typically not include the comments. The code below is a version of the
toString () method above with the three adaptations discussed:

public String toString() { return String.format(...); }



Appendix C
Sample Applications

Reading and trying to understand existing code is an essential part of learning soft-
ware design. The two software projects described below provide sample code in the
form of complete working applications.

Both applications were developed following the principles and techniques pre-
sented in this book. Throughout the chapters, brief sections titled Code Exploration
illustrate how some of the material presented in the chapter is applied in practice. To
maximally benefit from the sample applications, I recommend downloading a local
copy of the code. The Code Exploration sections are indexed with the name of the
application followed by the class where the relevant code can be found. The intent
for this structure is to facilitate diving into code with a minimum of effort by using
the open file shortcut key combination available in most development environments.

The two applications offer distinct levels of challenge in code understanding.
The complete source code and installation and usage instructions can be found on
GitHub at the URLs indicated below.

Solitaire

The first sample application, Solitaire, implements the card game of the same name.
This application serves as the context for many of the running examples in the book.
It realizes some non-trivial requirements while remaining of overall manageable
complexity. It should thus be possible to understand the general architecture of this
project and many of the detailed design and implementation decisions after a few
months of study. For some of the discussions in the chapters, knowledge of the game
terminology will be useful. Figure C.1 illustrates the layout of a game of Solitaire
in progress and includes overlays to indicate important terms. At the top-left is the
deck of face-down cards. A user draws a card from the deck and places it face up
in the discard pile. The four piles at the top right of the layout are the foundation
piles (these can be empty). Finally, the seven piles of cards that fan downwards are
jointly called the fableau (tableau piles can also be empty). The code discussed in
the book is consistent with Release 1.3.

https://github.com/prmr/Solitaire
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57 Solitaire 0.3 — X

FoundationsPiles
| S

Fig. C.1 Domain terminology for the Solitaire card game

JetUML

The second application, JetUML, is the interactive tool used to create all of the UML
diagrams in this book. Although still modest in size compared to many software
applications, it can be considered real production code and its design involves some
decisions that go beyond the material covered in the book. The code discussed is
consistent with Release 3.9.

https://github.com/prmr/JetUML
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Law of Demeter and 153
agile process  see software development
process
alias 274
impact on code readability 110
allMatch method 265
annotation 106
anonymous class  91-94
closure, and 93
and Commanp 152
for implementing event handlers 223
for implementing function objects 52
iterators, and 56
vs. lambda expression 245
anonymous object, in object diagram 23
antipattern  see design antipattern
application framework  see framework
application skeleton 214
architectural pattern 10, 196
ArrayList class 17,279
and iterators 58
as interface implementation 46
copy constructor for 31,32
modeling in object diagram 22
assert keyword, statement 38
to avoid null references 75
vs. assert methods 101
assertion, in testing  99-101
AssertionError 38, 39
assertThrows method 112
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B
bad smell  see design antipattern
base class  see also superclass, 158

abstract vs. non-abstract 178
avoiding restrictions 187
dependency with subclasses 184
downcasting from 161
subtyping relation for 178

behavior
composition  250-254
parameterization 242

blame assignment 38

brace 282

branch coverage see test coverage

C
C++, as supporting multiple inheritance 162
caching
and object equality 82
callback method 198, 200
and ISP 202
and pull data-flow strategy 202
asevent 203,204

call sequence 199
in library types 202
in Visitor 231,232
naming 198
parameters for 200
return value for 203
single vs. multiple 212
supporting push and pull data-flow 202
unused 204,209
camel case  see medial capitals
cardinality, in class diagrams 50
cast operator  see downcasting, 161
catch clause 279
for reflective operations 103, 104, 106
class see also base class, 16,274
abstract  see abstract class
anonymous see anonymous class
as abstraction 4
final 185
immutable see immutability
inner see nested class
interface of 43
local see nested class
multi-mode 138
to match domain concepts 16
visibility of 20
Class class  103-105
class diagram 49, 67
aggregation in 128

and source code perspective
inheritance in 159
class hierarchy 162
class literal 104
ClassCastException 162
ClassNotFoundException 104
client code 14
and use of Optional 77

decoupling from with polymorphism

hiding information from 19

in design by contract 37

role in ComposiTE 131

role in ISP 63

sharing references with 26

use of interfaces by 47

use of STRATEGY by 58

using null references 34
clone method 145,172
clones see code clones
cloning 172

shallow vs. deep 173

to copy internal objects 32

use in PROTOTYPE 148

217

vs. polymorphic copying 145

closure 93
code clones 158
code comments 282
and lambda expressions 246

as means to capture design rationale

in interface definition 45
use in design by contract 38
code obfuscation 2
coding conventions
Collections class 47,242
Collections framework 46, 279
and equality testing 84

6,281-283

and violation of the LSP 188

collections vs. streams 263
collector 270
combinatorial explosion 130
ComMAND design pattern
combined with TEMPLATE MET
183-184
inheritance and  177-180
comments see code comments
Comparable interface 4648, 51
Comparator interface
242-244, 250,251
with dependency injection 6
comparing method 252,257

component graph, in GUI  216-222
component library 214
CowmposITE design pattern ~ 130-133

as used in GUI applications

150-153,178

HOD

51-53,58,92,93,

1

216
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157
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combining with DEcoraTor 142
copying objects in 147
in GUI component graph 217
in the Visitor 227
vs. DECORATOR 139
composition  126-129
vs. inheritance ~ 174-177
concat method 264
concrete state  see state
constant
as guaranteed by final modifier 80
coding conventions for 281
value of enumerated type as 17
constructor 164, 165
access through metaprogramming 106
and object equality 85
avoiding in test fixtures 109
copy see copy constructor
default 163
modeling in sequence diagrams 135
of abstract classes 180
of records 21
overloading of 170
private, in FLYWEIGHT =~ 85
private, in SINGLETON ~ 88
role in ComposITE 132
role in DECOrATOR 141
sharing reference through 26
Constructor class 105
Consumer interface 255
context  see also design context
of design pattern 10
contract, design by  see design by contract
controller see MVC (Model-View—
Controller)
copy constructor 32
limitations of 144
count method 264
coupling  see decoupling
covariant return type 146
coverage see test coverage

D

data  see also state
encapsulating 14
exposing  30-33
streams as flow of 263
data-flow strategy  see also OBSERVER design
pattern
combining push and pull
pull 201,202,211-212
push 200,201, 207-209
debugging 38

202,212-214

291

declarative vs. imperative programming 266
decomposition 126
DECORATOR design pattern  137-142
as used in GUI applications 216
combining with ComposiTE 142
copying objects in 146
vs. inheritance 176
with consumer function 255
with inheritance  181-183
decoupling 44
creation of dependencies and 61
for testability 118
interface from implementation 44
PAIRWISE DEPENDENCIEST 195
through iterators 54
through polymorphism 46, 47
via dependency injection 60
deep copy  see object copying
default method 45
and functional interfaces 244
in OBSERVER 205,211
defensive programming 38
delegation  see also Law of Demeter, 126
and testing 116
in DEcorATOR 140, 143
Demeter, Law of see Law of Demeter
dependency 61
dependency injection
and testing 117
as alternative to SINGLETON 89
dereferencing 16, 19, 73,274,276
design
capturing knowledge of 7-8
constraint 4
decision  see design decision
definition of 4-6
documenting  see documentation
goals of 4
in development process 67
sustainability of 5
design antipattern 11
DUPLICATED CODET  see main entry
Gobp CLasst  see main entry
INAPPROPRIATE INTIMACYT  See main entry
LONG METHODT  see main entry
MESSAGE CHAINT  see main entry
PAIRWISE DEPENDENCIEST  see main entry
PRIMITIVE OBSESSIONT  see main entry
SPECULATIVE GENERALITYT  See main entry
SWITCH STATEMENTT  see main entry
TEMPORARY FIELDT  see main entry
design by contract 37-40
and Commanp 151
example of 260

60-62
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in interface definition 45

testing with 111

to avoid null references 74
design context 5
design decision 4,7

capturing 5,49

example of bad 15
design diagram  see also UML diagram, 7
design flaw  see design antipattern
design intent 5

as indicated by access modifiers 21

declarative programming and 266
design know-how 9
design method, comprehensive 9
design model 8

simplifications of 23
design pattern

COMMAND  See main entry
COMPOSITE ~ see main entry
DECORATOR  See main entry

definition of  10-11
essential elements of 10
first-class functions and 258

FLYWEIGHT  See main entry
NULL OBJECT  See main entry
OBSERVER  See main entry
PROTOTYPE  See main entry
SINGLETON  See main entry

TEMPLATE METHOD  See main entry
VISITOR  See main entry
design principle
definition of 9
Information Hiding
Interface Segregation
Liskov Substitution
Loose Coupling
Separation of Concerns
State Space Minimization
design rationale 7
design space 4, 10
design trade-off 4
and SINGLETON 89
in design patterns 10
diagram see design diagram, UML diagram
diamond operator 278
distinct method 265
divide and conquer
documentation 37
and the UML 8
design by contract and 37
design patterns and 10
of design 7
of lambda expressions 246
using functional interfaces 260

see main entry
see main entry

see main entry

see main entry

see main entry
see main entry

126, 250

Index

domain see problem domain
DoubleStream class 268
downcasting 104, 161-162
and covariant return types 146
DUPLICATED CODET antipattern 252
and behavior parameterization 251
and VisiTor 235
avoiding with method references 248
intests 109
polymorphism and 158
dynamic dispatch, or binding 168

E

effectively final variable see variable
encapsulation  13-14, 19, 24, 28, 33
and anonymous classes 53
and scope 20
and testing  113-115
impact of inheritance on 167
impact of setter method on 25
VisiTor and 234
end state  see state
enhanced for loop
enum keyword 17
enumerated type 16
abuse of 76
as having a natural ordering 48
immutability of 29
modeling of in object diagram 23
testing of 99
use for SINGLETON 89
equality of objects  82-84
equals method 83
error
as reason to change software 2
caused by misusing a type 19
due to missing interface 47
introduced by bad design 2
introduced by ignorant surgery 4
NullPointerException as symptom of 73
resilience to 5
error handling  see also exceptions, 36
event handling see GUI (graphical user
interface), 203-205, 215
in GUI applications 216
event loop 222
exceptions  279-280
abuse of 35
and design by contract 39
for input validation 34
incloning 174
in testing 111,112
exhaustive testing  see testing

see for loop
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extends keyword
applied to classes 160
applied to interfaces 64
extensibility
as enabled by polymorphism 46
as supported by inheritance 158
limitation of SwitcH STATEMENTT 144

F

factory method 53
failure, of a test see test failure
field 274
accessibility 20, 163
encapsulation of 25
final 80, 141, 185
in object diagram 22
inheritance of 162
initialization 164, 175
restricting access to 19
returning copy of 31
static 275
Field class 105
filter method 265
final keyword 80
fixture see test fixture
flat map 268
FLYWEIGHT design pattern ~ 85-88
and class introspection 105
vS. SINGLETON 89
flyweight factory 87
for loop, enhanced 55
forEach method 265
usage antipattern 270
forEachOrdered method 265
forName method 104
framework
Collections  see Collections framework
for dependency injection 62
for GUI applications  see GUI
for unit testing  see testing
JavaFX  see JavaFX
JUnit  see JUnit
function
composition of 251
first-class  242-243
higher-order 243,262,263, 265
Function interface 256, 260
function object 51, 52,242
for event handling 223,225
function type 244
functional interface  see interface
functional programming paradigm 243

G

generative programming 8
generic type  48,277-278
in class diagram 50
getClass method 105
and inheritance 160
getter method 24
and inheritance 163
of records 21
global variable 275
in SINGLETON ~ 88
Gobp Crasst antipattern 127
in GUI component graphs 222
multi-mode class as 138
guard, in state diagram 71
GUI (graphical user interface)
components for 217-222
event handling in  222-225

214-216

H

hashCode method 84
helper method

for notifying observers 199

in functional design 251,252
heuristic, as attribute of the design process
Holywood Principle 198

I

identity of objects 82-84
in DECOrRATOR 141
ignorant surgery 4
lllegalArgumentException
llegalStateException 36
immutability 28-30, 69
and final fields 81
and text fixtures 110
of flyweight objects 87

34,98
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4

imperative vs. declarative programming 266

implementation

ease of 4

tying concept with 15, 18
implements keyword 45
implicit argument, parameter

as input to tests 99

in sequence diagrams 134
import keyword, statement 277
INAPPROPRIATE INTIMACYT antipattern 25
inference for lambda expressions 246
information hiding 14

applying 16

example of 99,113

166,276
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violating with exceptions 35
violating with message chains 154
inheritance 158
and subtying 160
motivation for 157
of fields 162
of methods 166
proper use of  186-189
single vs. multiple 162
vs. composition  174-177
initializer block 86
injection  see dependency injection
inner class  see nested class, 91-92, 94
input data, for unit test 98
input validation = 33-36
to avoid null references 74
instance variable  see variable
integration testing  see testing
intent  see design intent
interface 14,19, 43
ambiguity in 37
and design by contract 37
and exception handling 39
as overloaded term 43
as specification 44
decoupling from implementation 44
extending through subtyping 64
extending to expose internal state 30
functional = 243-245
naming convention for 47
segregation  see ISP
vs. class 46
@interface keyword 106
interface type 44
intermediate operation 265
introspection 103
IntStream class 268
invariant 37
inversion of control
motivation for  194-196
ISO (International Organization for
Standardization) 8
ISP (Interface Segregation Principle)
and OBservER 202,211
and VisiTor 227
issue management system 8
lterable interface 54
iteration, in software development process 6
iterator  54-56
ITERATOR design pattern 56, 57
sequence diagram of 135
lterator interface  54-57

62-66

Index

J

Javadoc, use with design by contract 38
JavaFX 214
JetUML 286

representing static members with 50
JUnit  100-102

K
key extractor 257
L

lambda calculus 245

lambda expression 53, 245-248

Law of Demeter 153-155

lazy creation, of flyweight objects 87
library type, modeling in UML diagram 22
life cycle of objects  see object

life line, in sequence diagram 135

limit method 264

LinkedList class 46

List interface 46

local class  see class

localization 2

logging 137

LoNG METHODT antipattern 81

Loose Coupling Principle 9, 126

LSP (Liskov Substitution Principle) 187

M

main method
and GUI applications 215
modeling in object diagrams 23
map method 267
map-reduce 243,269
mapping  267-268
MDD (model-driven development) 8
medial capitals, in coding conventions 281
MESSAGE CHAINT antipattern 154
message, in sequence diagram 135
metaprogramming  103-107
as obstacle to object uniqueness 84
to copy internal objects 32
method 275
abstract  see abstract method
applicability to call statement 166
callback  see callback method
default  see default method
final 184
focal 108
for observer notification 199
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getter  see getter method
helper see helper method

inheritance of 166

instance vs. static 275

overloading  see overloading

overriding  see overriding

selection algorithm for

168

setter  see setter method
static  see static method

Method class 105

method reference  248-250, 253

compatibility of 256

model see also design model, 9

as element in MVC
modeling language 8

197

modifier see access modifier

modulo operator 15

multi-mode class  see class

MVC (Model-View—Controller)

N

natural ordering 48

navigability, in class diagrams

nested class

49

196

for implementing function objects

static 91
new keyword, statement
NoSuchElementException
Node class 217
NuULL OBIJECT design patte
for test stubs 117
null reference  73-76
avoiding 74
impact on design 37

22,274

35

m

in equality testing 83

NullPointerException 73
as result of misusing a

(0]

type

19

obfuscation see code obfuscation

object 19,274
as abstraction 4

78-80

equality see equality of objects
identity  see identity of objects

in sequence diagrams
initialization of 164
interface of 43

life cycle of 69
lifetime 70
prototype 148

state  see state
stateful vs. stateless

134

69

52
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stub, in unit tests  116-118
uniqueness  see uniqueness of objects
object copying  see also cloning
deep vs. shallow 32
polymorphic  see polymorphic copying
object diagram  22-24, 68
object graph 22,126
integrity of 133
traversing, in Visitor 231
object-oriented programming 9
observable, role in MVC 197
OBSERVER design pattern 197
and adapter classes 204
applying 207-214
as used in event handling 222
callback methods in 198
control flow in 198
data flow in 200, 203
eventsin 203
example call sequence in 199
in functional style 261
observer notification 199
using ISP in 202
with inheritance  209-211
with multiple observer types 205
Optional class  see optional type
optional type  76-78
oracle see test oracle
outer instance 91
overloading 170-171
accidental 188
@Override annotation 170, 188
overriding 167
to define object equality 83

P

package 277
pair programming 6
PAIRWISE DEPENDENCIEST antipattern 194
Parent class 217,221
path coverage see test coverage
perspective on software, static vs. dynamic
67

pipelining 264
polymorphic copying  144-147

with inheritance  171-174
polymorphic instantiation 147
polymorphism 45

and iterators 54

and STRATEGY 58

and switch statements 144

as requirement for stubs 116

in OBSERVER 198
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lambda expressions and 245

leveraging for NuLL OBJECcT 78

through objects vs. functions 258
postcondition 37

Liskov Substitution Principle and 187
precondition 37

and functional interfaces 260

in interface definition 45

in the ComposiTE 132

Liskov Substitution Principle and 187
PRIMITIVE OBSESSIONT 15

avoiding with enumerated types 17
primitive type 273
principle  see design principle
printin method, as method reference 256
private access modifier see access modifier,

see also private field, private method
problem domain 3, 15, 126
process model 6
protected access modifier  see access modifier
ProTOTYPE design pattern  147-149
public access modifier see access modifier
pull, push data-flow strategy see data-flow
strategy

Q

quality attributes of design 4
R

rationale  see design rationale
record keyword, type 21, 84
reduce method 269
reduction 269
refactoring 6
reference

escaping 24-27

null  see null reference

shared, problem with 26
reference type 273

impact on state space 68

in object diagram 22
reflection  see metaprogramming, 103
ReflectiveOperationException 106
regression testing  see testing
remove method 56
removelf method 247,249
reusability 4

as effect of polymorphism 46
reversed method 252
role, in design patterns 57
run-time GUI perspective 220

Index

S

scattering, of concerns in code 48
Scene class 217
scope 19

in definition of interface 43

of local variable 19
self-call

in sequence diagram 136

TEMPLATE METHOD 186
self-transition, in state diagram 71
separation of concerns 48, 126, 128

and multi-mode class 138

as design principle 9

enabled by the ISP 63

example of 128

impact of PAIRWISE DEPENDENCIEST on 196

supported by Visitor 229
sequence diagram 68, 134-137
serialization 84

as obstacle to object uniqueness 84

to copy internal objects 32
set data type, equality of 83
setter method 25

for dependency injection 62
shallow copy see object copying
shuffle method 47
SINGLETON design pattern
Smalltalk 196
software development practice 6
software development process 6
software verification, vs. testing 100
solution template, of design pattern 10
solution, possible vs. acceptable 4
sort method 242
sorted method 264

88-90

sorting 47
source code GUI perspective  217-218
specification 44,45

example of ambiguous 98
SPECULATIVE GENERALITYT antipattern 73,
253
avoiding with visitor 228
stack overflow, as caused by overriding 168
start method 221
start state  see state
state 68
and OBSERVER 209
concrete vs. abstract 69
initial and final states in state diagram 70,
71
synchronizing between objects 194
state diagram  68-69

state machine diagram  see state diagram
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state space 68
State Space Minimization Principle 72
statement coverage see test coverage
static initializer block  see initializer block
static method 275
importing 253
in class diagram 50
in interfaces 244
static nested class  see nested class
stereotype, in UML diagram 56
STRATEGY design pattern 58, 59
and dependency injection 60
in functional style 255,259, 260
Stream interface 263
stream method 264
streams  263-265
coding convention for 266
of numbers 268
vs. collections 263
String class
as having a natural ordering 48
immutability of 29
modeling in object diagram 23
stub  see object
subclass 158
subject, role in MVC 197
subsumption in test coverage metrics 121
subtyping 45
and interface extension 64
inheritance and 160
sum method 268
super keyword 169
superclass 158
Supplier interface 255
SWITCH STATEMENTT antipattern 51
and object copying 144
and polymorphic instantiation 147
in OBSERVER 213
multi-mode class and 139

T

tangling, of concerns in code 48
technical debt 6
TEMPLATE METHOD design pattern
TEMPORARY FIELDT antipattern 73
terminal operation 265
@Test annotation 101, 106
using with exceptions 112
test case 100, 118
selection method for 118
test coverage 118,119
branch criterion 120
example of insufficient 109

183-186

297

metrics for 119
path criterion 121
statement criterion 120
test failure 101
test fixture 100, 109-110
test oracle 98
independence of 108
test runner 101
test suite 100, 102
testing 98
exhaustive 99
framework for 100
functional vs. structural 118
limitations of 100
regression 100
vs. verification 100
thenComparing method 252, 254
this keyword 51, 166,276
throw keyword, statement 34,279
@throws Javadoc tag 34
trade-off ~ see design trade-off
transition, in state diagram 70
try block 279
type
compile-time vs. run-time 160
conversion of 161
defining 14
enumerated see enumerated type
generic  see generic type
hiding implementation with 16
of arrays 274
primitive  see primitive type
reference  see reference type
selecting in sequence diagram 135
values and operations of 19
type checking 48
type safety 161
type wildcard 104

U

UML (Unified Modeling Language) 8-9
UML diagram

class diagram  see class diagram

object diagram  see object diagram

sequence diagram  see sequence diagram

state diagram  see state diagram

to describe design pattern 10
uncertainty, in design process 4
undefined behavior, and design by contract

37

underlining, as convention in UML 22
understandability, of a design 4,5
uniqueness of objects  8§2-84
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and the SINGLETON 89

of class Class 105
unit testing ~ see testing
unmodifiable view 33
unmodifiableList method 32, 33
user experience GUI perspective 217
UUT (unit under test) 98

\%

value 273
variable 273
as abstraction 4
corrupting value of 15
corrupting with null reference 34
effectively final 93
final 80
global
see global variable 1
instance see also field, 274

Index

instance, use for composition 126
verification  see software verification
version control 6, 8
view see MVC (Model-View—Controller)

unmodifiable  see unmodifiable view
visibility restriction  see also access modifier

with inheritance 171
VisiTor design pattern 226238

data flow in 237

with inheritance 235
void keyword 275

w

waterfall process  see software development
process
wrapper object
DECORATOR as 137,176
Optional as 76
unmodifiable listas 32
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